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ABSTRACT

Dataflow architectures offer the ability to trade program-level parallelism in order
to overcome machine-level latencies in accessing memory and in communicating
with other processors. Dataflow further offers a uniform synchronization paradigm,
representing one end of a spectrum wherein the unit of scheduling is a single in-
struction. At the opposite extreme are the von Neumann architectures which
schedule on a task, or process, basis. As a basis for scalable, general purpose mul-
tiprocessors, traditional von Neumann architectures are unsuitable due to their in-
ability to tolerate latency and to provide means for fine-grained synchronization.

This report examines the spectrum by proposing a new architecture which is a
hybrid of dataflow and von Neumann organizations. The analysis attempts to dis-
cover those features of the dataflow architecture, lacking in a von Neumann
machine, which are essential for tolerating latency and synchronization costs. These
features are captured in the concept of a parallel machine language which can be
grafted on top of an otherwise traditional von Neumann base. In such an architec-
ture, the units of scheduling, called scheduling quanta, are bound at compile time
rather than at instruction set design time. The parallel machine language supports
this notion via a large synchronization name space.

It is shown that the combination of dataflow-style explicit synchronization and von
Neumann-style implicit synchronization in the same instruction set results in an ar-
chitectural synergism. Using an instruction set which is strictly less powerful than
that of the MIT Tagged-Token Dataflow Architecture (TTDA), the hybrid architec-
ture can exploit the same kinds of parallelism as the TTDA. Given that a compiler
can generate scheduling quanta of two or three instructions, the hybrid architecture
will execute approximately the same number of instructions as the TTDA. Larger
quanta can result in the hybrid actually executing fewer instructions than the
TMDA, demonstrating the power of passing state implicitly between program-
counter sequenced instructions.

Key Words and Phrases: architecture, context switching, dataflow, hybrid, I-
structure storage, latency, multiprocessor, name space, parallel machine language,
process state, split transaction, synchronization, von Neumann
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DTRODUCTION §1

Chapter One

Introduction

It has become apparent that the lessons learned in 40 years of designing von

Neumann uniprocessors do not necessarily carry over to multiprocessors. Compiler

technology coupled with simple pipeline design is now used effectively

[36,48,49,51] to cover bounded memory latency in uniprocessors. Unfortunately,

the situation is qualitatively different for multiprocessors, where large and often un-

predictable latencies in memory and communications systems cannot be tolerated by

using similar techniques. This is attributable at the architectural level to poor sup-

port for inexpensive dynamic synchronization [8]. Specifically, latency cost is in-

curred on a per-instruction basis, but synchronization on a per-instruction basis is

impractical. A scalable, general purpose multiprocessor architecture must address

these issues. Traditional compile time sequencing is too weak a paradigm for

general purpose machines (c.f., ELI-512 [291, the ESL Polycyclic processor [501), and

traditional run time sequencing mechanisms are not sufficiently flexible (c.f, The

IBM 360 Model 91 [1, 56], the Cray-1 [511).

Dataflow architectures offer such synchronization at a per-instruction level as the

normal modus operandi. Each instance of an instruction can be though of as an

independent task with specific dependence requirements which must be satisfied

prior to initiation. A dataflow machine provides the mechanism to detect efficiently

the satisfaction of these requirements and to process all such enabled tasks. Given

the means to express a computation as a graph of such interdependent tasks, one

has a natural means for executing, at any instant of time, all and only those instruc-

tions for which the synchronization constraints have been satisfied. To the extent

that the number of such candidate instructions exceeds by some suitable amount the

instantaneous capacity of the machine to process them, latencies inherent in the

physical machine can be hidden, or masked. Heretofore, seeking these benefits has

implied a significant departure from the von Neumann camp of architectures, leav-

ing a very substantial and important body of knowledge behind.

I I I "1



§ 1 ITRODUCTION

This research offers a framework for understanding the tradeoffs between these two
points in the space of computer architectures. The overall goal of this study is to
discover the critical hardware structures which must be present in any scalable,

general-purpose parallel computer to effectively tolerate latency and synchroniza-
tion costs. This investigation is based on demonstrating that von Neumann instruc-
tion sequencing simplicity and datafilow sequencing generality are but the extrema
of a continuum. To explore this continuum, a new architecture is developed as a
synthesis of the best features of von Neumann and dataflow ideas. Evaluation of
this architecture is based on characterizing the differences in various architectural
figures of merit (e.g., number of instructions executed, instruction complexity) be-

tween the new machine and the well-studied MIT Tagged Token Dataflow

Architecture (TTDA) [10, 18.

Analyses of von Neumann and Dataflow Architecture

Chapter 2 examines the strengths and weaknesses of both the von Neumann and
dataflow regimes as bases for a parallel computer. In von Neumann architecture, it
is shown that the desire to scale a general-purpose machine from the level of tens to
hundreds of processors implies the need for changes in the basic processor architec-
ture. The desire to switch from a single processor to a connection of many intro-

duces unavoidable /atencies. The requirement to similarly decompose a single
problem into communicating parts implies the need for efficient, fine-grained
synchronization. It is shown that von Neumann machines have only a limited
ability to deal with the former, and little or no ability to handle the latter.

In a dataflow machine, synchronization is not only available at the lowest hardware
levels, it is unavoidable. The key sequencing mechanism in a dataflow machine is

based on the matching of names from a large space. Activities, or instances of in-
structions, are uniquely named. Data for a given instruction are tagged with the
activity name. Hardware provides the means for bringing identically-tagged data
together and for scheduling the denoted instructions. It is shown that such match-
ing is not strictly necessary in all cases. Moreover, it is shown that in these cases
the inability to eliminate such synchronization results in lost locality.

Synthesis of a Hybrid

Chapter 3 presents a new architecture which is developed by taking the essential

2
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features of a dataflow machine and integrating them into a von Neumann machine.
The notion of a parallel machine language is presented which captures the following

key features:

* The instruction set is designed in such a way that instruction execution
time is always independent of unbounded latencies.

* Synchronization events are named. Names are drawn from a large
space, and names can be manipulated as first-class hardware data
types.

* Both explicit and implicit synchronization can be expressed - programs
are represented as partial orders of sequential threads.

Two execution models are presented. The first, an idealized model, captures the no-

tion of executing computations expressed in the parallel machine language, but with

few other constraints. The number of processors is assumed to be unbounded, and

the communication latency is assumed to be zero. This model provides the means
for studying the effects that architectural assumptions have on the behavior of a

given program, eg., the best-case parallelism which can be uncovered. The second

model is more realistic. By presenting the high-level design of a realizable processor

capable of handling partially-ordered computations, a set of constraints is developed

and applied on top of the idealized model. This provides a vehicle for studying the
architecture's response to a variety of applications, and a means for evaluating the

efficiency of various implementation devices such as operand caches.

Code Generation

Chapter 4 considers the issues of compiling code for a hybrid architecture. In the

von Neumann world, compilation is complicated by numerous instances of static

resource allocation. Doing a good job of this, however, can result in excellent locality

i.e., efficient use of high-bandwidth storage and a solidly packed pipeline. In the

dataflow world, many of these problems cum opportunities evaporate in the face of

implicit management of token storage and the near-zero cost of naming synchroniza-

tion events. In the hybrid paradigm, compile-time tradeoffs between these two are

possible. This significantly complicates the task of generating "optimal" code.

A simple approach is presented for choosing between these two domains.

Dependences between instructions are classed as either static or dynamic, the dif-

ference being that a dynamic dependence is sensitive to unbounded latency.
Instructions are partitioned into chunks called Scheduling Quanta (SQ). All instruc-

3



§ 1 ENTRODUM'ON

tions in a given SQ depend, transitively, on the saye set of dynamic arcs. Having
partitioned a computation thus, von Neumann style sequencing is used within an
SQ, and dataflow sequencing is used between them. By this means, latency can be

masked by excess parallelism as in a dataflow machine.

Analysis of the Hybrid Approach

Chapter 5 presents results of emulation experiments run on the idealized and realis-
tic models, using SQ partitioned code derived from Id program graphs. A com-
parison is made between the hybrid machine and the MIT Tagged-Token Dataflow

Architecture (TTDA). In general, it takes two hybrid instructions to equal the com-

putational power of a TTDA instruction. However, it is shown by experimental
result that, given the same program graph, the hybrid machine and the TTDA ex-
ecute approximately the same number of instructions. By this observation it is
posited that the full power of TTDA instructions is not used in general, and that a
large fraction of this unused power is attributable to unnecessary synchronization

generality in the TTDA.

Convergent Efforts

Chapter 6 reviews other related efforts which seek to reconcile, or at least under-
stand, the differ3nces between von Neumann and dataflow architectures. Directions
for future research are sketched.

4
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THE IMPORTANCE OF PROCZSOR ARCHITECTURE § 2

Chapter Two

The Importance of Processor Architecture

Current-day multiprocessors represent the general belief that processor architecture

is of little importance in designing parallel machines. In this Chapter, the fallacy of

this assumption will be demonstrated on the basis of two issues: latency and

synchronization. The argument is based on the following observations:

1. Physical parallelism implies latency for both processor-to-memory and
processor-to-processor communications.

2. Latency scales up with the number of processors.

3. Traditional processors employing simple von Neumann style instruc-
tion scheduling will idle when executing any instruction which incurs
this latency.

4. Attempting to go beyond this limit implies the need for efficient,
hardware-level synchronization means.

5. Based on the cost of using such hardware, only certain types of paral-
lelism can be exploited efficiently.

Section 2.1 defines the class of machines which are of interest in this study. In

Section 2.2, the shortcomings of von Neumann architecture are explored in more

detail. A framework is developed for defining the issues of latency and synchroniza-

tion. The traditional methods used to reduce the effect of memory latency in von

Neumann computers are examined, and their limitations are discussed. A similar

discussion of synchronization methods is presented. Section 2.3 looks critically at

dataflow architecture and attempts to articulate its strengths and weaknesses.

Section 2.4 seeks to compare the two architectures and the types of parallelism

which can be exploited. On the negative side, this comparison highlights the in-

flexibility of the von Neumann approach and shows the inefficiency of the datalow

approach. From a positivist's view, the example focuses attention on the attributes

of each existing architecture which one would like to combine into a new architec-

ture.



I 2.1 DIPOWrANCR OF PROCESSOR ARCEMTECTURE

2.1 Scope

The present discussion pertains specifically to scalable, general purpose parallel
computers. "Parallel Computer" denotes a collection of computing resources, specifi-
cally, some number of identical, asynchronously operating processors, some number
of identical memory units, and some means for intercommunication, assembled for
the purpose of cooperating on the solution of problems1 . Such problems are decom-
posed into communicating parts which are mapped onto the processors. "General
purpose" means simply that such computers can exploit parallelism, when present,
in any program, without appealing to some specific attribute unique to some specific
problem domain. "Scalability" implies that, given sufficient program parallelism,
adding hardware resources will result in higher performance without requiring
program alteration.

The scaling range is assumed to be from a single processor up to a thousand
processors 2. Parallelism significantly beyond this limit demands yet another change
in viewpoint for both machines and languages.

2.2 von Neumann Architectures

In this section, it is argued that latency and synchronization are fundamental issues
which must be faced by all architects of scalable, general purpose parallel com-
puters. In particular, various mechanisms have been invented to deal with latency
and synchronization issues for von Neumann uniprocessor architectures - these are
analyzed and are shown to be ineffective when such a von Neumann machine is used
as the basis for a parallel computer.

2.2.1 Latency and Synchronization

A parallel computer is, by definition, a collection of computing resources. Because
the processors and memories in the collection occupy physical space, there will
necessarily be limitations on the time to communicate between them. The organiza-
tion of a parallel computer, therefore, gives rise to communication latency.
Similarly, by definition, general purpose parallel computers imply the cooperation of

'In the remainder of this report, the terms paralel computer and multiprooenor will be used inter-
changeably.

2By Bell's metric (I1, this is an architectural dynamic runge of 30 dB.

6



LATENCY AND SYNCHRONIZATION 2±.1

Figure 2-1: Structural Model of a Multiprocessor

processors on the solution of a single problem. Therefore, problems must be logically

decomposed into communicating fragments, implying the need for some sort of time-

coordination, or synchronization. These issues are examined in depth in the follow-

ing sections.

Lateney. The First Fundamental Issue

Any multiprocessor organization can be thought of as an interconnection of the fol-

lowing three types of modules (see Figure 2-1):

1. Processing elements (PE): Modules which perform arithmetic and
logical operations on data. Each processing element has a single
communication port through which all data values are received.
Processing elements interact with other processing elements by send-
ing messages, issuing interrupts or sending and receiving
synchronizing signals through shared memory. PE's interact with
memory elements by issuing LOAD and STORE instructions modified as
necessary with atomicity constraints. Processing elements are charac-
terized by the rate at which they can process instructions.

2. Memory elements (M): Modules which store data. Each memory ele-
ment has a single communication port. Memory elements respond to
requests issued by the processing elements by returning data through
the communication port, and are characterized by their total capacity
and the rate at which they respond to these requests3 .

31n many traditional designs, the "memory" subsystem can be simply modeled by one of these M
elements. Interleaved memory subsystems are modeled as a collection of Ms and C's. Memory
subsystems which incorporate processing capability can be modeled with PE's, Ws, and C.

i7



S=1 R IMPORTANCE OF PROCESSOR ARCETECTLYZ

3. Communication elements (C): Modules which transport data. Each
nontrivial communiation element has at least three communication
ports. Communication elements neither originate nor receivesynchronizing signals, instructions, or data; rather, they retransmit
such information when received on one of the omuitonports to
one or" more of the other communication ports. Communication ele-
ments are characterized by the rate of transmission, the time taken per
transmission, and the constraints imposed by one trnsisio on
others, e.g., blocking. The maximum amount of data that may be con-veyed on a communication port per unit time is fixed.

Latency is the time which elapses between making a request and receiving the as-

sociated response. The above model implies that a PE in a multiprocessor system
faces larger latency in memory references than a uniprocessor does because of the
transit time in the communication network between PE's and the memories. This
argument is quite independent of notions of locality and network topology. Given a
physical parallel computer, any computation running on it is constrained to occupy
nonzero volume, and any communication within that volume is subject to speed-of-

light limits.

In a von Neumann processor, memory latency determines the time to execute
memory reference instructions. Said another way, von Neumann instruction sets
are traditionally designed with instructions whose execution time is latency depend-
ent. When this latency cannot be hidden by some means, a tangible performance
penalty is incurred.

Synchronization: The Second Fundamental Issue

For the sake of the discussion, call the basic units of computation into which
programs are decomposed for parallel execution computational tasks or simply tasks.

A general model of parallel programming must assume that tasks are created
dynamically during a computation and die after having produced and consumed
data. Tasks are made up of a static component, representing program text, and an

invocation-specific component representing the state of the computation. Tasks are
mapped onto processors and operate in mutual asynchrony.

Synchronization is the time-coordination of the activities within a computation. In a
von Neumann machine, instruction execution is implicitly synchronized by the dis-
patching circuitry, using a program counter for sequential instruction initiation. In

a parallel computer, a qualitatively different kind of synchronization is required be-
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Figure 2-2: Operational Model of a Multiprocessor

tween tasks due to their assumed mutual asynchrony. Historically, much effort has
been devoted both to developing high-level programming primitives (which are in-
evitably tied to the metaphors of the language) and to designing efficient implemen-
tations which rely minimally on specific hardware synchronization features, thus as-

suring their generality.

One may choose to view the space of high-level primitives a number of ways, but the

essential activities involve creation of parallel work, coordination of parallel work,

and prevention of parallel work. The following three metaphors illustrate these ac-

tivities:
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1. Fork / Join Parallelism (creation): A task is created as a result of a
fork operation, and can run concurrently with the creating task until
encountering a join operation. The join enforces synchronization and
ultimately results in the termination of the forked task.

2. Producer-Consumer Parallelism (coordination): Given two extant
tasks, one task produces a data structure that is consumed by the
other. If producer and consumer tasks are executed in parallel,
synchronization is needed to avoid the read-before-write race.

3. Mutual Exclusion (prevention): Extant tasks share some serially
reusable resource, and means must be provided to guarantee that only
one task at a time may have access to it. Because the behavior
depends on the time-ordering of requests, non-determinism is implied.

Synchronization involves two or more participants and a common meeting ground.

The meeting ground has a specific name known to the participants. The meeting

ground is associated with at least one bit's worth of information - the encoding of an

event. If the bit is not set, it is said that the event is pending. If the bit is set, it is

said that the event has occurred. Operationally, a synchronization operation in-

volves testing to see if an event has occurred and then taking one of two alternative

actions based on the result of the test. If an event has occurred, the computation

may proceed normally. If it has not, some other action must take place which serves

to block the normal computation from proceeding. This may have the form of an

enforced busy-waiting for the event which inevitably wastes computing resources.

Alternatively, the task making the synchronization test can be put aside to have the

test tried again at a later time. Such putting aside is called context switching in

which the task's private state is evacuated from the processing resource and, option-

ally, another task's state is installed. Often, the terms ro/!ing out and rolling in are

used to describe this process.

Extant tasks may be viewed as being in one of the following states at any given

time: ready-to-execute, executing, or suspended, with state transitions happening at

synchronization, scheduling, and context switching points, respectively (see Figure

2-2). Synchronization operations incur two kinds of cost: that associated with test-

ing (incurred on every synchronization operation) and that associated with blocking

(only for pending events). Costs may be bounded as in the case of an evacuation

scheme or they may be unbounded as in the case of the busy-waiting scheme.

There are several subtle issues in accounting for synchronization costs. Because

events are named, synchronization cost should also include the instructions that

10
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generate, match and reuse the names. It may not be easy to identify the instruc-

tions executed for this purpose. Nevertheless, such instructions represent overhead

because they wouid not be present if the program were written to execute on a single

sequential processor.

Another subtle issue has to do with the accounting for intra-task synchronization.

Because most high performance computers overlap the execution of instructions

belonging to one task, techniques used for synchronization of instructions within the

rtask, e.g., because of pipeline delays at a branch point, are often quite different from

techniques for inter-task synchronization. In these cases, busy-waiting in the form

of pipeline interlock or the execution of compiled-in MW instructions is usually safer

and cheaper than context switching. This is usually done under the assumption

that the idle time will be strictly less than the time to switch tasks. These lost

cycles are as much a synchronization cost as are those associated with context

switching.

More subtle yet is the cost which arises when the synchronization name space is

small (as it usually is in schemes employing registers or interrupt levels as the

meeting places). Synchronization name space implies a coupling of two necessarily

efficient mechanisms: the ability to name a meeting place and the ability to enforce

synchronizing behavior (e.g., blocking) in testing for an event. In this sense,

registers with reservation bits plus an instruction dispatcher which tests the bits

represents a synchronization name space. Traditional semaphores in main memory

do not - while the name of the meeting place, an address, can be generated cheaply,

the enforcing of synchronizing behavior, if done in software, is expensive. The issue

of a small synchronization name space is that names themselves are serially reus-

able resources which must be managed. Often this management is done at compile

time, and the cost takes the elusive form of a restricted number of simultaneously

pending synchronization events.

In summary, synchronization incurs cost, but the total cost is a function of the ef-

ficiency of the mechanism and the degree to which synchronization is used.

Unfortunately, in models where the cost is much more than the cost of, say, an arith-

metic instruction, these two factors (efficiency and degree of use) are seldom inde-

pendent. The efficiency function may be nonlinear (eg., the cost of generating and

using another synchronization name may be zero until some hardware-specific limit

is reached - the cost then becomes infinite). This may result in some reduction in

Ii* 11
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use of the mechanism. In so doing, another cost has been incurred: loss of paral-
lelism.

2.2.2 Processor Architectures vo Tolerate Latency

In this section, the changes in von Neumann architectures that have directly
reduced the effect of memory latency on performance are described. All of these seek
to uncouple memory reference performance from processor performance either by
migrating "essential" data to reside within the processor proper (registers, data
caches) and/or by hiding memory latency behind an otherwise occupied processor
(instruction prefetching, instruction caches, pipelining, LOAISTORE organization).

Consider the model that either all memory modules in a multiprocessor form one
global address space out of which any processor can read any word, or a model in
which processors communicate directly with one another via messages, the
memories being strictly local to processors. Either model demonstrates that latency
means much more than simply "delay," to wit:

* Latency is Variable: The time to fetch an operand / communicate a
value in a message may not be constant because some memories /
processors may be "closer" than others in the physical organization of
the machine.

" Latency Cannot be Bounded: No useful bound on the worst case time
to fetch / send a value may be possible at machine design time because
of the scalability assumption.

" Chaos Arises out of Order: If a processor were to issue several
(pipelined) requests to different remote memory modules / processors in
a given order, the responses could arrive in a different order.

Before tackling these very hard problems, the traditional solutions for uniprocessors
are examined in some detail. These solutions share the interesting property that
solving latency problems invariably introduces synchronization problems.

Increasing the Processor State
In the earliest computers, such as EDSAC, the processor state consisted solely of an
accumulator, a quotient register, and a program counter. Memories were relatively
slow compared to the processors, and thus, the time to fetch an instruction and its
operands completely dominated the instruction cycle time; arithmetic performance
was incidental.

12
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By investing in some additional high-speed storage, e.g., multiple accumulators, a
new game was possible: a computation could be organized to load these ac-

cumulators from memory, to perform some computation using only the ac-

cumulators, and to store the final results. The increase in processor state meant

that, at least for the accumulator-only instructions, instruction execution time could

be made independent of the long-latency memory. However, the enlarged processor

state still did not help reduce the time lost during memory references and, con-
sequently, did not contribute to an overall reduction in cycle time. Perhaps the most

significant effect of increased state was the introduction of index registers which

eliminated the need for self-modifying code, bringing an attendant reduction in the

total number of instructions executed.

Instruction Pre-fetching

The time lost to instruction fetching can be totally hidden, and the cycle time

thereby improved, if fetching is done during the execution phase of the previous in-
struction (pre-fetching). If instructions and data are kept in separate memories, it is

similarly possible to overlap some amount of operand fetching as well (The IBM

STRETCH [13] and Univac LARC [25] represent two of the earliest attempts at im-
plementing this idea).

Instruction pre-fetching works well only when the execution of instruction i does not

have any effect on either the choice of instructions to fetch (as in the case of BRANCH)

or the content of the fetched instruction (self-modifying code) for instructions i1,

i+2, ..., i+k. The latter case is usually handled by simply outlawing it. However,

effective overlapped execution in the presence of BRANCH instructions has remained

a problem. Techniques such as pre-fetching both BRANCH targets have shown little
performance/cost benefits. However, the microprogramming trick of delayed BRANCH

instructions has been incorporated, with success, in LOAD/STORE architectures. The
idea is to delay the effect of a BRANCH by one instruction. Thus, the instruction at

i+1 following a BRANCH instruction at i is always executed regardless of which way
the BRANCH at i goes. One can always follow a BRANCH iastruction with a NOP in-
struction to get the old effect. However, experience has shown that seventy percent

of the time a useful instruction can be put in that position.

Operand pre-fetching is subject to similar dependence constraints from previously

issued instructions. In sequential code, it is quite common that an operand for in-

13
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struction i is the result of instruction i-i. It is necessary to synchronize these two

instructions so as to guarantee that instruction i gets the correct value. One
method, called bypassing, is to force the operand prefetch hardware to ignore the
value it would have normally fetched and to substitute the value to be produced by
instruction i-1 when this kind of dependence is detected. A variant on this scheme
is to delay the fetching of operands for instruction i until instruction i-I has stored
its result. This technique is referred to as interlocking. The attendant delay, or idle
time, is commonly called a bubble.

Because overlap is not applicable to all cases of all instructions, an architect must
pay the price of increased complexity in terms of synchronization hardware to detect
and deal with the special cases, or he must forego these optimizations.

Instruction Buffers, Operand Caches and Pipelined Execution

The time to fetch instructions can be further reduced by providing a fast instruction
buffer, further increasing the processor state. In machines such as the CDC 6600
[55] and the Cray-1 [511, the instruction buffer is automatically loaded with n in-

structions in the neighborhood of a referenced instruction whenever the referenced
instruction is found to be missing. Similarly, operand fetching can be optimized by
providing operand caches which prefetch and store data values which are in the
neighborhood of a referenced datum. Both of these techniques rely on locality: be-
cause of sequential instruction interpretation, given the execution of instruction i,
the next instruction to be executed will be, with very high probability, i+1.
Transitivity further implies the need for i+2, i+3, and so on. The probability density
function of likely successor instructions, given i, is strongly centered about i as op-
posed to being uniformly distributed. Therefore, there is economic value in pre-
fetching program text in the neighborhood of a referenced instruction from a slow
storage (main memory) into a higher speed buffer in the processor. If many such
instructions can be pre-fetched with a single memory reference, the total number of
references can be reduced, and the memory access time will become more a function
of buffer speed. If the PDF of instructions can be used to infer a similar PDF for the
associated operands, operand caches can magnify the main memory's apparent
speed for data as well. This class of locality, called spatial locality, relates charac-
teristics of one fetch operation with the characteristics of other fetch instructions. In
subsequent chapters, the kindred concept of temporal locality will be exploited. This
relates characteristics of one store operation with the characteristics of other fetch

14
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Figure 2-3: Variable Operand Fetch Time

instructions (i.e., that a value, once produced, will likely be consumed shortly

thereafter).

As each stage of instruction processing is optimized, the natural generalization is to
organize the processor as a pipeline, dividing the total instruction execution task

into a number of equivalently-sized subtasks, e.g., fetching the instruction from the

instruction cache in the first stage, decoding it in the second stage, fetching the

operands from the operand cache in the third stage, and so on. The hope is to be

able to dispatch instructions with a periodicity (called the pipeline step or beat)

equal to the time taken by the slowest pipeline stage, rather than the time taken by

the sum of the stages.

Designing a well-balanced pipeline requires that the time taken by various pipeline

stages be more or less equal, and that the "things", i.e., instructions, entering the

pipe be independent of each other. Obviously, instructions of a program cannot be

totally independent except in some special trivial cases. Instructions in a pipe are

usually related in one of two ways: Instruction n produces data needed by instruc-

tion n+k, or only the complete execution of instruction n determines the next instruc-

tion to be executed (the aforementioned DRASNIC problem).

Limitations on hardware resources can also cause instructions to interfere with one

another. Consider the case wherein both instructions n and n+1 require an adder,

but there is only one of these in the machine. Obviously, one of the instructions

15
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must be deferred until the other is complete. A pipelined machine must be able to
prevent a new instruction fiom entering the pipeline temporarily when there is a
possibility of interference with the instru s already in the pipe. Detecting and
quickly resolving these hazards is very difficult with ordinary instruction sets, e.g.,
IBM System/370, DEC VAX, or Motorola 680x0, due to their complexity.

A major complication in pipelining complex instructions occurs when the stage time
is not strictly bounded, eg., when memory / communication latency is involved.
Even more troublesome is the possibility that responses to such long-latency opera-
tions may arrive out-of-order, necessitating some form of synchronization (refer to
Figure 2-3).

Load/Store Architectures

A variety of instruction sets, pioneered in the 1960s [55], divide instructions into two
disjoint classes. In one class are instructions which move data unchanged between
memory and high speed registers. In the other class are instructions which operate
on data in the registers. Instructions of the second class cannot access the memory.
This rigid distinction simplifies instruction scheduling. For each instruction, it is
trivial to see if a memory reference will be necessary or not. Moreover, the memory
system and the ALU may be viewed as parallel, noninteracting pipelines. An in-
struction dispatches exactly one unit of work to either one pipe or the other, but
never both.

Such architectures have come to be known as LOADSTORE architectures, and include
the machines built by Reduced Instruction Set Computer (RISC) enthusiasts (the
IBM 801 [491, Berkeley RISC [481, and Stanford MIPS [361 are prime examples).
The design of the instruction pipeline is based on the principle that if an instruction
gets past some fixed pipe stage, it should be able to run to completion without incur-
ring any previously unanticipated hazards.

LOADSTORE architectures are much better at tolerating latencies in memory ac-
cesses than are other von Neumann architectures. In order to explain this point,
consider a simplified model which detects and avoids hazards in a LOAJ)DTORE ar-
chitecture similar to the Cray-1. Assume there is a bit associated with every
register to indicate that the contents of the register are undergoing a change. The bit
corresponding to register R is set the moment an instruction is dispatched which

16
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will update R. Following this, instructions are allowed to enter the pipeline only if
they don't need to reference or modify register R or other registers reserved in a

similar way (a kind of interlocking). Whenever a value is stored in R, the reser-

vation on R is removed, if an instruction is waiting on R, it is allowed to proceed.

This simple scheme works under the assumptions that registers whose values are
needed by an instruction are read before the next instruction is dispatched, and that

the ALU or the multiple functional units within the ALU are pipelined to accept

inputs as fast as the decode stage can supply them, subject to the other kinds of
resource and control flow dependences discussed above.

The benefit is that, to the extent memory fetches can be issued far in advance of the
need for the data, the latency incurred in the fetches can be masked behind the ex-

ecution of other, independent instructions. Herein is the hook: the compiler must be
able to discover opportunities for fine-grained parallelism in order to separate the
memory references from the instructions which use the fetched data. Said another

way, the extent to which this technique can be used to mask latency cost depends
critically upon the compiler's ability to uncover instruction level parallelism.

An equally necessary requirement for masking latency in this way is proper and ef-
ficient hardware support for synchronization (and thus another incestuous linkage
between the two fundamental issues). A scheme based on reservation bits on proces-

sor registers and associated logic in the instruction dispatcher represents a very

basic kind of synchronization support, but such a scheme lacks both scalability and

generality. Consider that

* Each fetch requires a target register. Therefore, the degree of paral-
lelism which can be exploited, and thus the latency which can be
tolerated, is bounded by the number of registers. Viewed more
abstractly, registers are synchronization names, and the small size of
the register set artificially constricts the synchronization name space.

The instruction set lacks the means for expressing this parallelism - the
instruction dispatcher must intuit it dynamically, and must be prepared
to deal with bad intuition. Specifically, the instruction dispatcher may
very quickly find its hands full of instructions which are not quite ready
to execute in the search for those which are.

Some LOADVTRE architectures have eliminated the need for reservation bits on
registers by making the compiler responsible for scheduling instructions, such that

the result is guaranteed to be available. The compiler can perform hazard resolution

17



j 2.2.2 T= ndPORTANCE OF PROCOSO. ARCEMUCTUH

only if the time for each operation e.g., ADD, LOAD, is known; it inserts NOW instruc-

tions wherever necessary. Because the instruction execution times are an intimate

part of the object code, any change to the machine's structure (scaling, redesign) will
at the very least require changes to the compiler and regeneration of the code.

Current LOADTOWRE architectures assume that memory references either take a

fixed amount of time (one cycle in most RISC machines) or that they take a variable

but predictable amount of time (as in the Cray-1). In RISC machines, this time is

derived on the basis of a cache hit. If the operand is found to be missing from the

cache, the pipeline stops. Equivalently, one can think of this as a situation where a

clock cycle is stretched to the time required. This solution works because, in most of

these machines, there can be either one or a very small number of memory

references in progress at any given time. While such schemes reduce the cost of

providing synchronization support, they do nothing to solve either the scalability or

the generality problems.

2.2,3 Synchronization Methods for Multiprocessing

As discussed above, solving latency problems requires some sort of synchronization

mechanism. This section examines the synchronization problem from a different

perspective: having decomposed a program into communicating parts, explicit time-

coordination is required which is motivated independently of latency concerns.

To form the basis for a multiprocessor, a von Neumann engine must support inter-

task synchronization in some form, but at what cost and with what granularity?

Consider that the cost of any synchronization mechanism will almost certainly dic-

tate the granularity of the tasks lest the machine spend all of its time synchronizing.

Once the granularity is determined, so is the exploitable parallelism.

Global Scheduling on Synchronous machines

For a given problem on a totally synchronous multiprocessor, it is possible to en-

vision a master plan which specifies operations for every cycle on every processor.

An analogy can be made between programming such a multiprocessor and coding a

horizontally microprogrammed machine. Recent advances in compiling [281 have

made such code generation feasible and have encouraged researchers to propose and

build several different synchronous multiprocessors [29, 50]. These machines are

generally referred to as very long instruction word (VLIW) machines because each
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instruction actually contains multiple smaller instructions (one per functional unit
or processing element). The strategy is based on maximizing the use of resources

and resolving potential run-time conflicts in the use of resources at compile time.
Memory references and control transfers are "anticipated" as in RISC architectures,

but here, multiple concurrent threads of computation are being scheduled instead of

only one. Given the possibility of decoding and initiating many instructions in
parallel, such architectures are highly appealing when one realizes that the fastest

machines available now still essentially decode and dispatch instructions one at a

time.

This technique is effective in its currently realized context, i.e., FORTRAN-based
computations on a small number (less than several dozen) of processors. Compiling

for parallelism beyond this level, however, becomes intractable. It is unclear how

problems which rely on dynamic storage allocation or require nondeterministic and

real-time constraints will play out on such architectures. It is clear, however, that

this technique can and should be combined with other approaches which address

dynamic synchronization.

Interrupts and Low-level Context Switching

Almost all von Neumann machines are capable of accepting and handling inter-

rupts. Not surprisingly, multiprocessors based on such machines permit the use of

inter-processor interrupts as a means for signalling events (i.e., triggering inter-task

synchronization). However, interrupts are rather expensive because, in general, the

processor state needs to be saved. The state-saving may be forced by the hardware

as a direct consequence of allowing the interrupt to occur, or it may occur explicitly,

i.e., under the control of the programmer, via a single very complex instruction or a

suite of less complex ones. Independent of how the state-saving happens, the impor-
tant thing to note is that each interrupt will generate a significant amount of traffic

across the processor - memory interface.

In the previous discussion, it was suggested that larger processor state is helpful in

reducing latency cost. Observe, however, that the use of interrupts for inter-task

synchronization would bid instead for small, easily-switched processor state. Thus,

reducing the cost of synchronization by making interrupts cheap would generally en-

tail increasing the cost of memory latency.
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Uniprocessorssuch as the Xerox Alto [60] and the Symbolics 3600 [451 have used the
technique of microcode-level context switching to allow sharing of the CPU resource

by the I/O device adapters. This is accomplished by duplicating programmer-visible
registers, in other words, the processor state. In one microinstruction, the processor
can be switched to a new task without causing any state-saving memory references.
This dramatically reduces the cost of processing certain types of events that cause
frequent interrupts. Few machines have used the idea of keeping multiple task con-
texts in a multiprocessor setting (one important exception is the HEP, to be dis-
cussed in Section 6.3.1) although it should reduce synchronization cost over proces-

sors which can hold only a single context,

The limitations of this approach are obvious. High performance processors may have

a small programmer-visible state (number of registers) but a much larger implicit
state (caches). Low-level task switching does not necessarily take care of the over-
head of flushing caches 4. Further, one can only have a small number of independent

contexts without completely overshadowing the cost of the ALU hardware.

Semaphores

A commonly supported feature for synchronization is an atomic operation to test and

set the value of a memory location. A processor can signal another processor by writ-

ing into a location which the other processor keeps reading to sense a change. Even
though, theoretically, it is possible to perform such synchronization with ordinary

read and write memory operations, the task is much simpler with an atomic

T ST-AMU-SIT instruction. TEST-AU-SIT is powerful enough to implement all
types of synchronization paradigms mentioned earlier. However, the cost of a

synchronization scheme based on TEST-A-SIT can be very high because it nor-
mally implies busy waiting. This results in lost ALU cycles and extra memory

references. Implementations of TEST-AN-SIT which permit non-busy waiting im-

ply context switching with the attendant expense.

It is possible to improve upon the multiprocessor behavior of TEST-AND-SIT by

generalizing it to the atomic nITCE-AND-Ou as suggested by the NYU

Ultracomputer group [261. The instruction requires an address and a value, and

4However, solutions such as multicontext caches and multiconteaxt address translation buffers have
been used to advantage in reducing this task switching overhead, (c.f, the mo stack mechanism in the
IBM 370/168).
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works as follows: suppose two processors, i and j, simultaneously execute

FETCH-AYD-ADD instructions with arguments (A,v i ) and (A,vj) respectively. After

one instruction cycle, the contents of A will become (A)+vi+v j . Processors i and j will

receive, respectively, either (A) and (A)+vi, or (A)+vj and (A) as results.

Indeterminacy is a direct consequence of the race to update memory cell A.

Different implementations realize different kinds of savings as a result of using

rZTC-A=(-W. The NYU proposal calls for a combining packet communication

network which connects n processors to an n-port memory. If two packets collide,

say VrZTCB-hD-ADD(A,v i) and FgTCE-AD-JUDD(A,v), the switch extracts the values

vi and vj, forms a new packet (VITCH-AN-ADD(A,vi+vj)), forwards it to the memory,

and stores the value of vi temporarily. When the memory returns the old value of
location A, the switch returns two values ((A) and (A)+vi).

This has the effect of reducing the total number of network packets in transit and of
limiting the number of fetch requests converging on a given memory address. Some

synchronization situations which would have taken 0(n) time can be done in

0(logn) time. It should be noted, however, that one memory reference may involve

as many as log2n additions, and implies substantial hardware complexity.

In the Cedar project [44], combining happens in the memory controller. This results
in a similar limitation of fetches against an address, but does nothing to reduce net-

work packets. Implementation in software by interpretation is a logically possible

third alternative, but realizes little, if any benefit.

In none of these schemes is the issue of processor idle time due to latency addressed.

In the worst case, the complexity of hardware support for combining may actually

increase the latency to the point of overshadowing the benefits of combining.

Cache Coherence Mechanisms

While highly successful for reducing memory latency in uniprocessors, caches in a

multiprocessor setting introduce a serious synchronization problem called cache

coherence. Censier and Feautrier [17] define the problem as follows:
A memory scheme is coherent if the value returned on a LOAD instruction is always

the value given by the latest STORE instruction with the same address.

It is easy to see that this may be difficult to achieve in a multiprocessor.
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Consider a two-processor system tightly coupled through a single main memory.

Each processor has its own cache to which it has exclusive access. Suppose further

that two tasks are running, one on each processor, and it is known that the tasks are

designed to communicate through one or more shared memory cells. In the absence

of caches, this scheme can be made to work. If, on the other hand, it happens that

the shared address is present in both caches, the individual processors can read from

and write to the address and never see any changes caused by the other processor.

Using a store-through design instead of a store-in design does not solve the problem

either. What is logically required is a mechanism which, upon the occurrence of a

STORE to location x, invalidates copies of location x in caches of other processors, and

guarantees that subsequent LOADs will get the most recent (cached) value. This can

incur significant overhead in terms of decreased memory bandwidth.

Solutions to the cache coherence problem center around reducing the cost of detect-

ing the possibility of incoherence, typically by using a logical directory of cached

data. Each entry in the directory reflects the state of the associated cache line, e.g.,

private, read-only, shared, etc. The directory is updated as necessary when lines

change state, and can be used to detect the possibility of incoherence. For example,
when an attempt is made to write to a shared line, the directory detects the need to

inform others to purge their copies. Obviously, a centralized implementation of the

directory does not scale. The directory may be distributed, and in some cases the

state information can be stored economically as a few extra bits on each cache line.

The problem now becomes one of keeping the distributed directory coherent. Many

opportunities exist to reduce the amount of coherence-maintaining communication

based on the state information (e.g., writing to a cache line marked as private re-

quires no communication), but some nontrivial communication will always be

required5 , and the amount of communication will likely not diminish as a machine is

scaled. The machine's performance will ultimately be limited by the rate at which

directories can process this coherence-maintaining traffic from their peers. Many

other schemes have been proposed for handling caches in small-degree multiproces-

sors such as making caches partially visible to the programmer, allowing explicit

state annotation and explicit flushing of lines.

It is worth noting that, while not obvious, a direct trade-off often exists between

50ne exception is the case of embarrassingly parallel applications which decompose into non-
communicating tasks.
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decreasing the parallelism and increasing the cachable or non-shared data. It is fur-
ther noteworthy that latency and synchronization are inextricably intertwined here:
to reduce latency, caches are introduced. This results in a synchronization problem
(coherence). Solutions to the synchronization problem such as implicit and explicit
purging of cache lines will result in poorer cache hit rates and increased average

latency.

2.2.4 Analysis and Summary

The von Neumann model, by virtue of its simplicity, offers some tremendous ad-

vantages. Consider, for example, that given the static structure of a compiled
program and nothing more than the value of the program counter during execution,
a tremendous amount of information can be deduced, e.g., the satisfaction or lack
thereof of data dependences, the termination of predecessor instructions, the non-

initiation of successor instructions, and so on. Consider also that a sequential
thread of computation, occupying a pipeline, has, by definition, exclusive access to
the entire state of the underlying machinery. This implies that the cost of com-
municating data values between instructions can be made extraordinarily low, and
that the compiler has tremendous leverage in managing the machine state per its
own criteria of optimality. Do these facts in any way imply that von Neumann
machines should be the basis for scalable, general purpose parallel computing?

Advocates of non-von Neumann architectures (including the author) have argued

that the notion of sequential instruction execution is the antithesis of parallel
processing. This criticism is actually slightly off the mark. Rather, a von Neumann
machine in a multiprocessor configuration does poorly because it fails to provide ef-
ficient synchronization support at a level low enough to permit its liberal and free

use. Why is this so?

The participants in any one synchronization event require a common ground, a
meeting place, for the synchronization to happen. This may take the form of a

semaphore [191, a register [511, a buffer tag [56], an interrupt level, or any of a num-
ber of similar devices. In all cases, one can simply think of the common ground as

being the name of the resource used (e.g., register number, tag value, etc.). The par.
ticipants also require a mechanism to trigger synchronization action.

When viewed in this way, it should be clear that the number of simultaneously
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pending synchronization events is bounded by the size of this name space as well as
by the cost of each synchronization operation. More often than not, this name space

is tied to a physical resource (e.g., registers) and is therefore quite small, thereby
limiting support for low level dynamic synchronization. For most existing von
Neumann machines, synchronization mechanisms are inherently larger grain (e.g.,

interrupts) or involve busy waiting (eg., the HEP6 [41, 53]). Therefore, the cost of
each event is quite high. Such mechanisms are unsuitable for controlling latency
cost. Moreover, since task suspension and resumption typically involve expensive

context switching, exploitation of parallelism by decomposing a program into many
small, communicating tasks may not actually realize a speed-up.

It is important to observe that these arguments together favor the alteration of the
basic von Neumann mechanism, and not its total abandonment. For situations
where instruction sequencing and data dependence constraints can be worked out at
compile time, there is still reason to believe that a von Neumann style sequential
(deterministic time order) interpreter provides better control over the machine's be-
havior than does a dynamic scheduling mechanism and, arguably, better cost-

performance. It is only in those situations where sequencing cannot be so optimized
at compile time, e.g., for long latency operations, that dynamic scheduling and low-
level synchronization are called for. One must also keep in mind that, despite any

desire to revolutionize computer architecture, von Neumann machines will continue

to be the best understood base upon which to build for many years.

2.3 Dataflow Architectures

Dataflow architectures [3,24,31,37] represent a radical alternative to von

Neumann architectures because they use dataflow graphs as their machine lan-
guage [5,23]. Dataflow graphs, as opposed to conventional machine languages,

specify only a partial order on the execution of instructions and thus provide oppor-

tunities for parallel and pipelined execution at the level of individual instructions.
For example, the dataflow graph for the expression

(axb)+(cxd)

*The HEP also exhibited raveral synchronization namespace problems: the register space was too
small (2K), there was a limit of one outstanding memory request per process, and there was a very
serious limit of 64 user process status words per processor.
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only specifies that both multiplications be executed before the addition. The mul-

tiplications can be executed in any order, even in parallel. The advantage of this

flexibility becomes apparent when considering that the order in which a,b,c and d

become available may not be known at compile time. For example, computations for

operands a and b may take longer than computations for c and d.

The instruction execution mechanism of a dataflow processor is fundamentally dif-

ferent from that of a von Neumann processor. Consider the MIT Tagged-Token ar-

chitecture, as depicted in Figure 2-4. Rather than using a program counter to deter-

mine the next instruction to be executed and then fetching operands accordingly, a

dataflow machine provides a low-level synchronization mechanism in the form of a

Waiting-Matching store which dispatches only those instructions for which data are

already available. This mechanism relies on tagging each datum with the address of

the instruction to which it belongs and the context in which the instruction is to be

executed, One can think of the instruction address as replacing the program

counter, and the context identifier as replacing the traditional frame base register.

It is the machine's job to match up data with identical tags and then to execute the

denoted instruction. In so doing, a new datum will be produced, with a new tag

indicating the successor instruction(s). Thus, each instruction represents a

synchronization operation. Note that the number of synchronization names is

limited by the size of the tag, which is intentionally large. Note also that the proces-

sor pipeline is non-blocking given that the operands for an instruction are available,

the corresponding instruction can be executed without further synchronization.

In addition to the waiting-matching section which is used primarily for dynamic

scheduling of instructions, the MIT Tagged-Token machine provides a second

synchronization mechanism called I-Structure Storage. Each word of I-structure

storage has two bits associated with it to indicate whether the word is empty, full or

has pending read requests. This greatly facilitates overlapped execution of a

producer of a data structure with the consumer of that data structure. There are

three instructions at the graph level to manipulate I-structure storage. These are
ALLOCATE: to allocate an array of n empty words of storage, I-FETCH: to fetch the

contents of the jth word of an array, and I-STORE: to store a value in a specified word.

Generally, software concerns dictate that a word be written into only once before it

is deallocated.

The dataflow processor treats all I-structure operations as split transactions. For
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example, when the I-FETCH instruction is executed, a packet containing the tag of
the destination instruction of the I-FETCH is forwarded to the proper address, pos-

sibly in a distant I-structure storage module. The actual memory operation may

require waiting if the datum is not present, and thus the result may be returned
many instruction times later. The key is that the instruction pipeline need not be

suspended during this time. Rather, processing of other instructions may continue

immediately after initiation of the operation. Matching of memory responses with
waiting instructions is done via tags in the waiting-matching section.

One advantage of tagging each datum is that data from different contexts can be

mixed freely in the instruction execution pipeline. Thus, instruction-level paral-
lelism of dataflow graphs can effectively absorb the communication latency and min-

imize the losses due to synchronization waits.

In summary, the MIT Tagged Token Dataflow Architecture (TTDA), and other

dataflow architectures like it [31, 371, provide well-integrated synchronization at a
very basic level. By using an encoded dataflow graph for program representation,

machine instructions become self-sequencing. One strength of the TTDA is that

each datum carries its own context identifying information. By this mechanism,
program parallelism can be easily traded for latency because there is no additional

cost above and beyond this basic mechanism for switching contexts on a per-
instruction basis.

However, it is clear that not all of the distinguishing characteristics of the TTDA
contribute towards efficient toleration of latency and synchronization costs. One

very sound criticism is that intra-procedure communication is unnecessarily general.

Intuitively, it should not be necessary to create and match tokens for scheduling
every instruction within the body of a procedure - some scheduling can certainly be

done by the compiler, for example, in the evaluation of an arithmetic expression. In

a dataflow machine, however, data driven scheduling is de rigueur.

The notion of a nonblocking, context-interleaving pipeline is a two-edged sword. It
provides the ultimate flexibility in context switching, but implies that the notion of

locality must be reconsidered. Again by intuition, given a full dataflow pipeline of

depth n, the working set size for instruction and operand caches must be on the or-

der of the sum of the n working set sizes for the threads of computation which

coexist in the pipe. This also implies that the time to execute the instructions in a
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Figure 2-5. Dependences and Parallelism in WaveFront

graph's critical path is n times the critical path length. One is left to wonder if it

might not be possible, even desirable, to optimize this by performing the necessary

synchronization explicitly, and relying on more traditional (read: well-understood)

mechanisms for instruction sequencing in the remainder of the cases. The uncer-

tainties in this argument are the fraction of time wherein synchronization is neces-

sary, and the complexity of the mechanisms required.

2.4 Comparison of von Neumann and Dataflow Approaches

Given this discussion of von Neumann and dataflow architectures, it is illustrative
to consider an example program and to examine the kinds of parallelism which can

be exploited under the two models.

Presented below is a simple program called WaveFront. It takes as input an in-
itialization vector of length n. The program allocates a matrix of dimension nxn, fills
in the first row and first column from corresponding elements of the initialization
vector, then proceeds to compute the remaining elements as follows: each empty
element's value is the average of three near-neighbor values - the north, west, and
northwest. The example is written in Id.
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Figure 24: Available Instruction Parallelism in 15x15 WaveFront

def wavefront edge vector -
(1,u id_bounds edge vector;
a - matrLx ((1,u), (1,u));
mr1,1] - edgevector[];
(for i from 1+1 to u do

a[1,i] = edge vector[i];
=li,1] - edgevecto[ti];);

(for i from 1+1 to u do
(for j from 1+1 to u do

m[i,j] - (=[i-1, J + m[i,J-1) + m[-1, J-1)) 1 3;))
in

a);

After having filled in the first row and first column, the computation proceeds as

shown in Figure 2-5, with all unfilled cells along any one diagonal being candidates

for parallel execution. The available parallelism in an ideal situation as a function

of time can be plotted as a parallelism profile7 (Figure 2-6).

The small blips around t=-15 represent initialization of the first row and first column

of the array. The bulk of the execution time belongs to the doubly-nested loop which

VParallelism profiles are derived by compiling a program into a dataflow graph of elementary in-
structions (AD, I-3cN etc.) which preserves only the essential data dependences. The compiled
graph is interpreted, with each instruction in the graph taking unit time. Intercommunication
latencies are asumed to be zero. At any time step, all and only those instructions which are logically
enabled are executed. The profile plots the number of such instructions as a function of time.
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performs the wavefront computation proper. As expected, the parallelism rises es-
sentially linearly until the computation diagonal reaches the middle of the array
(corresponding to the linear increase in number of elements computed on the wave
front). After this point, a corresponding linear decline is seen.

The parallelism exposed here takes a number of forms. While it is beyond the scope
and intent of this work to discuss the linguistic underpinnings which make the ex-

posure of parallelism possible, it is useful and instructive to examine the types of
parallelism which combine to give the results here:

" At the most basic level, the expression in the loop body has a certain
amount of parallelism built into it. Given the loop variables i and j,
three elements can be fetched from the two-dimensional array m in
parallel. Such parallelism is difficult to exploit across processors, but as
is discussed later in this thesis, this class of parallelism is essential for
keeping the pipeline full in the presence of long latencies.

" At a higher level, multiple instances of the inner loop are active simul-
taneously. In the compilation scheme used here, procedures are
represented as sets of codeblocks. A codeblock may have no more than
one loop and, consequently, inner loops are represented as separate
codeblocks. Nonstrictuess is preserved across an inter-codeblock inter-
face, so invocation and partial computation are entirely possible despite
the temporal absence of one or more arguments.

" Higher yet, multiple iterations of the outer loop are concurrently active.
It is the outer iteration which spawns multiple inner loop instances.

A dataflow machine which supports I-Structure storage can easily exploit all three
forms of parallelism. The dynamic result is that each diagonal is the producer of

data consumed by the next diagonal. Moreover, a dataflow machine can exploit ad-
ditional producer / consumer overlap between multiple, dependent instances of the

same program. Consider the MultiWave program below:
def .mltiwave edge _vtor n =

(a - wavefront edge v-tor;
in

(for i. from 1 to n do
nest a - wave a;

finally a));

Here, the function Wave is similar to WaveFront above, except that the input is the
matrix produced by WaveFront instead of an initialization vector, and that the loop

body is changed thus:
~i, m - (mIL-1, J1 + *[i, J-Il +

U[L-1,j-1 + previous matrlz[ijj) / 4;))

s0
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Figure 2-7: Available Instruction Parallelism in 15x15 MultiWave

That is, a dependence has been added: m[ij] now also depends upon its previous

value. The parallelism profile is shown in Figure 2-7a. When it is realized that a
dataflow machine can exploit this parallelism as well, the result is quite remarkable.
The peak (and average) parallelisms have simply doubled, and the critical path time

has increased a mere 12.4% (c.f , Figure 2-6).

Needless to say, a traditional von Neumann machine would be able to exploit vir-
tually none of this parallelism without significant effort. First of all, the program
would have to be expressed differently. In the Id approach, it is quite correct to
think the program is giving a definition for the value of each cell, and that the time-

ordering of instructions necessary to compute that value is dynamically determined
by the dataflow hardware. It is therefore transparent to the programmer.
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The point that von Neumann architecture offers a very different paradigm is clearly

made if one considers transliterating the Id code to FORTRAN. There, the program
becomes a specification of how to compute instead of what to compute. Simply

iterating over rows and columns, FORTRAN semantics would in fact hide the oppor-

tunity for inner loop parallelism because there is a data dependence between inner

loop iterations (consider the first invocation of the inner loop with i=t and j=1..u).

Loop interchange won't help in this situation. The program would have to be re-

coded to literally express computing the diagonals, with each inner loop instance

running along one diagonal. Aside from the aesthetics of doing this, it is hard to

argue that such transformations could be done automatically.

Given that the program can be re-coded by some means [4, the question of what

kinds of parallelism are exploitable remains. It is conceivable that a compiler could

exploit some amount of expression-level parallelism through instruction reordering

with the objective of partially masking latency cost. It is also conceivable that inter-

iteration parallelism in the inner loop (one iteration corresponding to the computa-

tion of one element in a diagonal) could be exploited, say, by the use of vector in-

structions.

It is difficult to imagine an efficient way, however, of exploiting the outer loop paral-

lelism depicted in Figure 2-7a without further re-coding because of the required fine-

grained synchronization. At best, the compiler would have to enforce barrier

synchronization at the end of each outer loop iteration before letting the next itera-

tion begin. The effect of such a barrier can be simulated by introducing an inter-

iteration dependence on the availability of the lower-right element in the matrix.

The not-too-surprising result for two iterations is shown in Figure 2-7b. Given n

iterations over an mxm array, the best-case running time is proportional to mxn.

Under the dataflow model (Figure 2-7a), however, the best-case running time is

proportional to m+n. The cost of not having fine-grained synchronization support is

clear, yet from the criticism of dataflow architectures, the cost of one such type of

fine-grained synchronization is also clear.

2.5 Summary
Processor architecture plays a critically important role in the making of a mul-

tiprocessor. Dataflow architectures embody somethmg which is sufficient for tolerat-

ing low-level latencies while simultaneously providing fine-grained synchronization
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support to programs decomposed for multiprocessing. While von Neumann
machines are clearly superior in the execution of long sequential threads, the in-
ability to provide cheap, fine-grained synchronization has left doubts as to whether
von Neumann architecture can reasonably be a basis for building multiprocessors.

The obvious question is can a new architecture be synthesized out of the best features
of dataflow and von Neumann architectures which adequately addresses the
shortfalls of both? Arvind has suggested that an architecture formed on the prin-
ciples of split transaction I-Structure memory references in a von Neumann
framework, coupled with data driven rescheduling of suspended instructions would
be interesting. Such a machine has the potential of tolerating memory latency and
of supporting fine-grained synchronization and yet, in the strict sense, is neither a
von Neumann machine nor a dataflow machine. In the next chapter, the question of

synthesis is explored.

I. ,
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Chapter Three

A Dataflow / von Neumann Hybrid

3.1 Synthesis

In the previous Chapter, it was concluded that satisfactory solutions to the problems

raised for von Neumann architectures can only be had by altering the architecture of

the processor itself. It was further observed that dataflow architectures do address

these problems satisfactorily. Based on observations of the near-miss behavior of

certain von Neumann multiprocessors (e.g., the Denelcor HEP [41, 53]), it is reason-

able to speculate that dataflow and von Neumann machines actually represent two

points on a continuum of architectures. The goal of the present study is to develop a

new machine model which differs minimally from the von Neumann model, yet em-

bodies the same latency and synchronization characteristics which make dataflow

architectures amenable to parallel processing.

Starting with the observation that the costs associated with dataflow instruction se-

quencing in many instances are excessive, others have suggested that dataflow ideas

should be used only at the inter-procedural level [43] thereby avoiding dataflow in-

efficiencies while seemingly retaining certain advantages. This view is almost cor-

rect, but ignores the importance of the fundamental issues. Restricting architec-

tures to this "macro dataflow" concept would amount to giving up what is possibly a

dataflow machine's biggest feature - the ability to context switch efficiently at a low

level to cover memory latency.

Given this, one is led to ask the following question: what mechanisms at the

hardware level are essential for tolerating latency and synchronization costs? Based

on various studies of parallel machines [2, 14,22,41] and on the observations

presented thus far, the following conclusions are drawn:

9 In general, on a machine capable of supporting multiple simultaneous
threads of computation, executing programs expressed as a total order-
ing of instructions will incur more latency cost than will executing a
logically equivalent partial ordering of the same instructions. In fact,
for any lenient programming language [59], expressing programs as a
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partial ordering is a necessary condition for avoiding deadlock. It is as-
sumed, therefore, that the machine language of any scalable, general
purpose parallel computer must be able to express partial ordering.

In any multiprocessor architecture, certain operations will take an un-
bounded amount of time to complete (e.g., those involving
communication). Such operations can be either atomic, single phase
operations or split transaction, multiphase operations8 . Multiphase
processing will always minimize latency cost over single phase process-
ing because the potential exists for covering processor idle time. Based
on the frequency of the occurrence of such long latency operations [21 in
all but the most trivial parallel computations, efficient multiphase
operation requires specific hardware mechanisms [7, 22].

The proposed architecture embodies these beliefs and reconciles the criticisms of von

Neumann and datallow architectures. Such an architecture is characterized by its

machine language which can be viewed as a superset of both von Neumann and

dataflow machine languages. In the sequel, the term parallel machine language

(PML) will be used to describe this superset. A proper PML must have the following

characteristics:

" The execution time for any given instruction must be independent of
latency. Traditional latency-sensitive operations, e.g., LOaDs from
memory, are re-phrased as split transactions which separately initiaLe
an operation and later explicitly synchronize on the availability of the
result.

" Each explicit synchronization event must be named. Names must be
drawn from a large name space and it must be possible to manipulate
the names as first-class hardware data types.

* Means for expressing both implicit (Le., program counter based) and ex-
plicit (named) synchronization must be provided.

The remainder of this chapter is devoted to the definition of a PML (Section 3.2) and

to the definition of a concrete architecture which executes it efficiently (Section 3.3).

3.2 Compilation Target Model

In this section, the notion of a parallel machine language is introduced as the basis

for any reasonable general-purpose programming model. Such a language provides

a metaphor for parallel threads of activity which must encompass means for naming

8A muitiplsae operation is one which can be divided into parts which separately initiate the opera-
tion and later eynchroniwe prior to using the result.
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parallel threads and means for time-coordinating, or synchronizing the threads. A

key idea is that the thread size should not be bound by the parallel machine lan-

guage but rather that the machine language should support threads of arbitrary size
in a completely general way.

While the focus of this work is not on languages and compilers for general purpose

parallel computers, it is convenient to make use of extant languages and tools for
the purpose of assisting in the development and characterization of the architecture.

To that end, Id and its compiler have been used in this study. This choice has

brought with it certain complications (discussed later), but provides a flexible
vehicle for generating dataflow graphs from a high level language. Because of their

generality, dataflow graphs are assumed as the preferred starting point in generat-

ing PML code. The approach will be to consider how dataflow graphs can be re-
represented so as to express implicit and explicit synchronization.

3.2.1 A Suitable Program Representation

Sequential execution of parts of a dataflow graph is a clear departure from the

dataflow model. While a dataflow graph expresses a partial ordering of instructions,

the idea of sequential interpretation implies some additional mode of representation.

It becomes desirable to map a dataflow graph into a partial ordering of threads or
totally ordered clusters of instructions where such clustering can be shown to im-
prove execution efficiency by some measure.

Definition 3-1: An instruction cluster is a nonempty set of instructions.

Definition 3-2: A partition of a dataflow graph is a mapping of each in-
struction in the graph to exactly one cluster.

Providing an architectural notion of clustering is a step beyond both dataflow and

von Neumann architectures. In the dataflow paradigm, each instruction is its own

cluster. In the von Neumann case, at least with conventional languages, the entire

compiled program is the cluster9 .

It is reasonable to hypothesize that the clustering methodology should not be bound

gCompiling dataflow graphs derived from functional languages for a von Neumann machine will
force the issue in that clusters will in many cases have to be much smaller than the entire program.
This will imply some sort of interpretive mechanism to schedule the clusters with the attendant
overhead.
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by the architecture as it is in both the dataflow and von Neumann cases. Rather,

clustering should be left as a degree of freedom for the compiler, and the architec-
ture should provide explicit support for this". That is, an architecture should not

be judged on its stated clustering methodology but rather on its support for a variety
of methods (sequential, fine-grained parallel, coarse-grained parallel, etc.). Such an

architecture must, therefore, simultaneously support efficient sequential threads of
execution and multiple execution contexts with minimal costs for naming and

synchronizing. In the dataflow execution model, each instruction has a static iden-
tity (instruction number within a given compiled procedure) and, when the proce-
dure is invoked, a set of dynamic identities (based on invocation instance). In the
hybrid model, a similar distinction is made.

Definition 3-3: A scheduling quantum (SQ) is a compiler-identified in-
struction cluster in which a total ordering is imposed on the instructions.
Each SQ belongs to exactly one compiled procedure. The first instruction
in an SQ is said to name the SQ.

Definition 3-4: A continuation is a dynamic (run-time) object which
denotes an instance of an SQ, that is, its instruction text plus its instance-
specific state.

The term thread has been used loosely, and its definition can now be made slightly
more precise. In a static context, the term refers to an SQ. Dynamically, the term

refers to a continuation.

3.2.2 Support for Synchronization

Synchronization in the von Neumann architecture is both a very old and a relatively
new notion. In the strictest sense, synchronization has always been necessary for

correct operation - operands must always be created before they are consumed.

However, under sequential execution semantics, synchronization is implicit in in-

struction ordering. Having concluded that programs should be expressed as SQ's
invalidates this assumption, and explicit means must be provided. In general it is
not possible to impose a total ordering on a set of SQ's (this in essence is von
Neumann instruction sequencing and, with lenient programming languages such as
Id, may lead to deadlock). SQ sequencing can only be determined at run time.

1OAs described by Traub [59], such a mechanism may well serve other purposes and is justifiable as a
means for supporting the class of lenient programming languages.
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Architectural support for synchronization and scheduling of SQ's depends on a num-
ber of issues, but the most basic is that of strictness. Within any arbitrary cluster of

instructions, it is possible (likely) that the total input requirement for the SQ will
exceed that of the first instruction. The architecture may provide strict scheduling
where all SQ inputs must be present prior to invoking the SQ, or nonstrict schedul-

ing where invocation is based solely on the requirements of the instruction to be ex-
ecuted next. The former case is explored by Buehrer and Ekanadham [15]. It seems
likely that, given a set of synchronization requirements and the need to express

these succinctly, support for strict scheduling will result in a larger nomber of
smaller SQ's than will nonstrict scheduling. This conjecture follows from the obser-
vation that it is not possible to transform a nonstrict partition into a strict one
simply by moving all synchronizations to the beginning of a thread without intro-
ducing the possibility of deadlock. It will be necessary to split the larger, nonstrict
threads into separate smaller ones at the intermediate synchronization points.
Moreover, given a nonstrict scheduling mechanism, the compiler can choose to par-

tition so as to mimic the behavior of strict scheduling. For the sako of this study,
then, the more general nonstrict scheduling policy is assumed. It is further assumed

that synchronization overhead, whatever the mechanism, is efficient to the extreme
of not being a first-order concern in code generation. Moreover, it is assumed that a
large, global synchronization namespace is available, and that the cost of allocating

names from this space is also negligible11 .

The instruction firing rules under this scheduling discipline must guarantee that in-
structions do not execute until the required inputs are present. In a dataflow
machine, this simply means that appropriate tokens (operands) must arrive on all
input arcs in order for an instruction to fire, and the detection of arrival is a run-

time action taken by the hardware. In a machine which supports clusters of instruc-
tions, the constraint of operand arrival must still be satisfied. However, the

hardware behaves somewhat differently than a dataflow machine, and seeks to dis-
tinguish operands on the basis of their origin, for only some of them require

synchronization at run time. Having partitioned a graph into a set of nontrivial
SQ's 12 , it is possible to distinguish different type of arcs as follows:

"In later chapters, these assumptions will be tested.

12A trivial SQ contains no instructions or has no input/output dependence relationships with other
SQ..
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Figure 3-1: Gating Effect of IrZTCH-like Instructions

Definition 3-5: A static unsynchronized arc is any explicit arc between
two instructions in the same SQ.

For such arcs, the sequencing constraint can be satisfied via proper instruction or-

dering within the SQ. That is, sequential execution within the SQ captures the or-

dering constraint of the arc, and no run time synchronization is necessary.

Definition 3-6: A static synchronized arc is any explicit arc between two
instructions in different SQ's.

For such arcs, the sequencing constraint can only be satisfied, in general, by some

dynamic mechanism in that SQ executions are not totally ordered. There are inter-

esting special cases of arcs crossing SQ boundaries which do not require run time

synchronization; these will be discussed in Section 5.2.2.

While not expressed explicitly in a dataflow program graph, there is an implicit

dynamic arc between every I.TORE instruction and I-FETCH instruction which refer

to the same structure and element. The arc is properly drawn from the output of the

i-TORE to the input of the I-FETCH only in the sense that the output of the I-FETCH

appears, at the graph level, to be strict in this "input." However, the desired be-

havior of I-FETCH, as discussed below, is that the fetch operation itself should not

depend upon the state of the slot (eg., Empty) from which a value is being fetched.

I-FETCH should merely initiate the fetching, and some kind of synchronization

mechanism must guarantee that instructions to receive the result of the fetch do not
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execute until the value is indeed available. Hence, the arc from the I-STORE is gated
by the execution of the I-FETCH, as depicted in Figure 3-1.

Every instruction which exhibits this kind of implicit, synchronizing behavior will be

treated specially:

Definition 3-7: A FTCH-like output of an instruction is one which gates a
dynamic arc connecting an I-STORE-like instruction with the sink instruc-
tion which is to receive its value. An instruction itself is FITCH-like if at
least one of its outputs is FZTCH-like.

As shall become clear below, a FITCH-like output is an abstraction of a synchronized,
long-latency operation. The actual dynamic arc begins at the I-STORE, and ter-

minates at the virtual gate. A static arc connects the virtual gate to each sink in-

struction. There is, clearly, a one-to-one correspondence between these arcs and the
actual arcs in the graph which connect I-FETCH instructions to the sinks. These arcs

have particular significance:

Definition 3-8: A dynamic synchronized arc is any arc which connects a
FlTCH-like output to a sink instruction.

The problem of managing synchronized arcs is analogous to the problem of coor-

dinating producers and consumers at a higher level by the use of I-structure storage
[34]. The idea is to associate state bits with each slot in such a storage which in-

dicate written or unwritten status. When written, read operations perform as in a
normal memory. When unwritten, read operations are deferred; operationally, the

read request itself is stored in the offending slot to wait for a write request to come

along. When this happens, the deferred read request is satisfied by forwarding the
newly arrived value. Significant time may elapse between arrival of the read re-

quest and arrival of the write request. This is of no consequence to the I-structure
storage unit per se. In the event that multiple read requests must be deferred, a list

is created and associated with the slot. This causes practical, but not conceptual,

problems. Engineering solutions depend on the statistics of list length which is re-

lated to a number of factors.

This idea can be applied to the problem of synchronizing SQ invocations. With each

invocation of a procedure is associated a frame of slots. A slot is provided for the

output of each instruction in the procedure 13. Each slot has I-structure-store-like

"3While not considered here, re-use of slots within an invocation is possible. The problem is similar
to that of re-using registers with the exception that reference patterns are often not statically deter-
mined.
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Figure 3-2: Stages in the Life of a Continuation

7behavior in that the slot has status bits (called presence bits) indicating its empti-

ness or fullness, and sequential processing of a continuation makes use of these
ppresence bits to effect synchronization action. Continuations can be thought of as

being in one of the states depicted in Figure 3-2. Upon initiation, a continuation

becomes Enabled. Enabled continuations compete for processor resources, and even-
* tually become Active when scheduled. The active continuation on each processor

executes instructions sequentially and is free to use any and all of the resources on

that processor. Synchronization action is effected by testing the status bits of one or
more slots in the frame, i.e., by the fetching of operands. Fetching from an empty

slot causes the Active continuation to enter the Suspended state, whereupon another
Enabled continuation may become Active. The fact of the suspension is recorded in

the empty slot itself. A subsequent STORE operation into the slot causes the
previously suspended continuation to re-enter the Enabled state14 . A continuation
may be suspended a number of times between initiation and termination. One can

think of a continuation as behaving like a more traditional task in a demand paged

system which, upon encountering a missing memory page, becomes suspended until

the page is made available.

3.2.3 Latency

With this powerful hardware-level synchronization technique, it is straightforward

to devise a method of tolerating long latencies. Dynamic synchronized arcs

represent the instances of latencies which cannot be bounded at compile time, and

always occur at the outputs of instructions which initiate long latency operations.

4Like I-structure storage, values may be fetched repeatedly. Fetching does not, in general, reset the
status bits.
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Figure 3-3: Unbounded Execution Time Modeled as a Hidden Dynamic Arc

Within the von Neumann paradigm, it is most commonly the case that such long
latencies are imbedded in instructions and directly result in processor idle time

(Figure 3-3). In order to prevent long latencies from causing the processor to idle,

the following is assumed:

Proposition 3-9: Dynamic synchronized arcs must never occur within a
non-preemptible unit of execution, and may only exist between such units
of execution.

In a von Neumann machine, this condition is violated because instructions are in

general non-preemptible 15 and may contain dynamic synchronized arcs, e.g., LAD.

Thus, the proposition can be narrowed to say that dynamic synchronized arcs

must never occur inside an instruction. That is, instruction execution time

must never be a function of the long latency. This is most easily guaranteed by

splitting all instructions with imbedded dynamic arcs into two parts which

15'f9ere are certainly exceptions to this rule. The IBM System/S70 architecture [39] recognizes that
system integrity is a function of bounded I/O interrupt response time and, therefore, instructions which
may run for a long time, eg., Move Long (im), are specified as being aegmentabl at well-defined
intermediate points in their execution. The time between such segment boundaries is typically much
longer, e.g., 256 memory cycles, than what is being considered here.
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separately initiate and then synchronize. In the case of L= ing a value from a
remote memory unit, one instruction would simply initiate the YZ!T= without wait-
ing for the value to arrive. It would then be the responsibility of any instructions
which use the lrXlced value to synchronize, or check for its presence, before
proceeding. Such instructions are commonly called split transactions.

In the context of the present discussion, it is useful to view these arcs as hinge-
points between units of execution (SQ's). Specifically, it is logical to push the un-
bounded latencies so that they occur between rather than within SQs. The intuition
is that while SQ A may initiate a number of long-latency operations, in order to
mask the effect of latency, the consumers of the long-latency resu s must be
asynchronous to A. This notion will be refined in Chapter 4. In this way, the
proposition may be phrased that dynamic synchronized arcs must never occur
inside an SQ. The partitioning of a graph must in some way be based on the
dynamic synchronized arcs within it.

It is therefore assumed that all long latency instructions will be split transactions.
In this model, the initiating instruction causes enough information to be sent, say, to
the memory subsystem so that the result can be sent back and stored into an ap-
propriate frame slot. Any attempt to use the value prior to its arrival in this slot

will result in suspension as described above. Note that the remote storage unit itself
need not be an I-structure storage for this mechanism to work properly.

3.2.4 Overview of the Model

The compilation model proposed herein is intended to be representative of a variety
of von Neumann machines, to which one might add mechanisms for dealing with

SQ's. The machine executes a three-address instruction set, with operands fetched
from frame slots and/or a set of registers. Scalar results are stored into frame slots
and/or registers. Registers are not part of the private state of the invocation but
rather are shared across invocations. This is significant in that the architecture as-
sumes no automatic save/restore facility and, therefore, registers cannot be used to
hold computation state across potential suspensions. The goal, of course, is to avoid
the need to save and restore registers by exploiting the hybrid nature of PML

representation which combines sequences of register-dependent von Neumann style
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code with the asynchronous, register-independent dataflow metaphor 16.

Hardware Types

While specifics of hardware datatypes and number systems are somewhat or-

thogonal to the architectural issues of interest in this study, it is difficult to make

convincing arguments about performance and effciency without taking some stand

on many of these. For this reason, the following assumptions are made. While it

was expedient in the implementation of arithmetic to assume that types are ex-
plicitly represented at the hardware level 17, this issue is unimportant for the points

to be made and can be ignored. That is, while each instruction's operand types are
explicitly defined, the architecture under study takes no stand on the issue of
hardware typing.

The following hardware types are defined. Each is a word-sized object which can fit

into a register or local memory slot:

Integers (TNT): Two's complement encoding.

Floating Point Number (FP):
Encoding of a signed number expressed as a mantissa
and a signed exponent. The representation is not sig-
nificant for this investigation.

Boolean (BOOL): Encoding of boolean TRUE and FALSE. Again, the ac-
tual representation is of little significance.

Codeblock (CB): A pointer to a codeblock in program memory.

I-Structure Descriptor ([SD):
A pointer to an I-Structure in global I-Structure storage
which also encodes the bounds of the structure.

I-Structure Address (ISA): A pointer to an element in global I-Structure storage.

Instruction Address (INSTR):
A pointer to an instruction in a loaded codeblock.

Closure Descriptor (CD): An encoding of a codeblock pointer, an integer arity, an
integer number of arguments as yet unspecified, and
the I-Structure address of the argument list.

lIntuition may lead one to believe that such a scheme results in degraded performance over a pure
von Neumann machine in the form of additional memory references for loading and unloading
registers. As shall become clear in a later section, this is an oversimplification because frame storage
can be cached easily without a coherence problem.

17In the results presented herein, the only form of autocoercion actually used is for numbers (integer
and floating-point number) and is defined more precisely in [6].
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Frame Descriptor (FD): A pointer to a frame in frame storage.

Iteration Descriptor (ID): A tuple of a program counter, two boolean flags and
three index offsets used to implement the k-bounded
loop schema, described in detail in section 4.3.5.
Format is

< PC FLAG PC N >

where P, C, and N are the index offsets denoting areas
in the frame for the previous, current, and next itera-
tions respectively.

Continuation Descriptor (CD):
A tuple containing a pointer to the next instruction to be
executed (program counter), a pointer to a frame base,
and three index registers. The format is strongly
similar to that of an iteration descriptor:

<PCFBRPCN>

The Arithmetic pseudo-type (ARITH) is used notationally to indicate an INT, FP, or
BOOL as will be clear from the context. The Any pseudo-type (ANY) is used nota-
tionally to indicate any hardware type. These two meta-types are not meaningful at
the hardware level.

Name Spaces

Code is to be compiled, named, and loaded on a per-codeblock basis. No limit is
assumed on the size of a codeblock, nor is a limit assumed on the size of program,
I-Structure, or frame memories. The register namespace is, however, assumed to be

finite and small.

Instruction Set

The instruction set is simple and regular in structure, with addressing modes and

instruction functions being largely orthogonal.

Addressing Modes

The basic addressing modes are

* Immediate: a literal value small enough to be encoded directly in the
instruction.

* Register:. The registers are a small, fixed size array of words which
provide no synchronization capability, nor are their values guaranteed
to persist across potential suspensions.
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Frame Direct: The Frame is a vector of words (slots). Frame size is
determined at compile time for each procedure. A procedure may only
access its own frame slots. Each slot has several presence bits associated
with it. The frame holds the state of an invocation. Frame Direct ad-
dressing specifies an offset from the frame base to select a slot. The
Frame addressing mode has two important sub-modes:

" Suspensive: riTc~ing with this mode causes the presence bits to
be checked and, if no value is present, the current continuation is
suspended as described previously.

* Nonsticky: Successful execution of an instruction which has per-
formed a FnWRH in nonsticky mode will cause the presence bits to
be reset, i.e., to indicate the slot is now empty.

* Frame Indexed: This mode is identical to Frame Direct mode save that
the slot is addressed by adding the specified slot number to the frame
base plus one of the three index offsets in the continuation. Suspensive
and Nonsticky submodes are available here as well.

Unless otherwise noted, input operand addressing may use immediate, register,

frame direct, or frame indexed modes. Output operand addressing may use register,

frame direct, or frame indexed modes.

Instructions

The instruction set being used as the compilation target is intentionally unspec-

tacular with the possible exception of the iteration, forking, and closure support in-

structions which will be described and justified below s . The instruction set has the

following notable characteristics:

" Each instruction produces, at most, a single explicit result. Instruction
outputs are associated with registers or frame slots within a given ex-
ecution context. All other "outputs" are viewed as side effects.

" Each instruction is simple enough to be executed in a single cycle,
modulo the costs of operand references which are discussed in detail in
Section 3.3. There are no long-latency instructions.

There are primitive instructions for the usual set of arithmetic and logical opera-

tions plus the usual complement of relationals. The is= opcode encodes all intra-

IsGiven the goal of making cogent comparisons to the TTDA, two instruction set design constraints
were assumed. First, the TIA claims that closures can be represented as objects no bigger than a
floating point number. Consequently, closure manipulating instructions are of the same complexity as
ADD. Second, resource management instructions represent calls to a manager, the instructions of
which are not counted for experimentation purposes. Hence, manager ops (marked with a superscript
K) and closure ops (marked with a superscript C) are implemented and counted as single instructions.
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Iautmae Set

Instruction Syntax Operand Type. comments

WOT DM3T nkc, etc. AUJTH=sAUIT monadic arithlqical
xDD umT, mc. a, mc. 3L, etc. AU1THxABITH=&ABr dyadic arithl/lcgical /relational

inO DUST, MC ANY=aANY inbvs-invocation data movement
MMY DIUD, MC. 0, SM. I FDxANYxDn%=20 inierinvocation data nwvement

LOAD IDU8T, OC. 0, aC. I I5DxD~T=,MqY indezed I-Fetch to a frame slot only
urM DMUST C. O, c.1 MSxANY=*DOOL waindexed I-Store with signal

I]= DUST, URC ENT=*FD compute new frame bose from current
zxXM DUT, MC.o0, MC. 1 I5DxDUT*18A compute structure element address
ZXID DUST, MC. 0, MC. 1 IDx1NT*ID compute iteation descriptor

STM saC VqTr_* set previous iteration offiset in AC
STCa MC vfrh*0 set current iteration offset in AC
aM SMc Vfl%-* set next iteration offset in AC
BTm DUST, MC. 0, MC. I h00jL=i.3 ut/reset mix~ conditionally qeu
BTVC DUET, UC.0, UC.1 lhdnBsThssI set PC and cmi~n conditionally q uee

RSTl ORC ANY=*0 reet frame presence bits
RBT2 2C. ,82C. 1 ANYxANY=,0 reset frame presence bits
Tan1 DUST, me ANY=*BOOL test frame presence bits with signal
TST2 DEST, MC. 0, mRC. 1 ANYxAMY*BOOL test frame presence bits with signal
TSTh m8c. OUC. 1 IDxInT=*o test loop termination

UR T~AI MOMOUO unconditional branch
P27 mc, Tarm 3OOLxINSvh* branch iff FALSE
UOT VC, T~ARIM DOOLXDMTh=-0 branch iff TRUE

U am,TARIM zzqiDRBTiA 0 branch iff 00
=Rz mRC, yAainT iriz NRx' branch iff -O
CTU T35T V4UT2=* fork a new continuation

SWImcTAD=T ANwx~fflTDek fork a new continuation, test slot

idC MMS, MC Wr1=*IBD allocate a CONS cell of gien kind
WZ0 DUST, Mc. 0,. 1 gfrfl I D allocate an I-Structure wl bousnds
uKry" DUST, mc. 0, am .1 DVflUT=*IBD allocate a vector w /upper bound and kind

=TC" DUST am CB=*FD allocate an invocation context
RZTC' DMST sac FD=*BOOL deallocate an invocation conteid

cawC DEBT. s CD=*DeT dosurO'. number Qf aWUMent remaining
c ~ DUST s= CD=*uf closure's anity
cam DUST, m2c CD=oCB dlosurels codeblock identifier

0C0 DUSC CD=.JBD losure's ahgument chain pointer
CZCO DUST, am. 0, Okc. 1 CDxISD=*CD build a new closure
CRDIC DUET, SM CD=.DOOL test a closure for application

invocation data movement. The Nova (MOVe Remote) opcode is used for procedure
linkage, and is the only way one procedure can store into another's fr-ame. There is
no sanctioned way for one procedure to directly read from another's frame19 .

Data can be moved between the global I-Structure memory and slots/registers only

"This has an important implication for the way fame storage can be implemented, in particular, it
avoids the coherence problem should it become desirable to cache frame data.
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via the LOAD and SToa instructions. LOAD takes a structure base address (ISD) and

an offset (INT), adds them to produce a structure element address, and forwards this
along with the target frame slot address to the appropriate remote memory unit,

again, without waiting for the result. The name of the instruction implies that the

result must be returned to the frame (as opposed to a register). The reason should

be clear - the fetched value will return asynchronously, therefore, all consumers
must be able to synchronize. Since registers are both volatile and non-
synchronizing, they are unsuitable as targets for a fetch-like operation.

STOR performs no indexing (three-address instruction format limit). The structure
element address (ISA) and the value are forwarded to the memory. A signal value is

produced. This is useful for termination detection as discussed in Sections 4.2.4 and

4.3.5.

Indexing for STORs is done explicitly by the IXSaL (IndeX Structure Address) instruc-

tion. The ixCC (IndeX Current Context) instruction derives new frame base ad-
dresses from the context's frame base address, allowing the construction of sub-

frame blocks, e.g., for procedure linkage. IXID (IndeX Iteration Descriptor) takes an
iteration descriptor and adds a given amount to all three of its index offsets.

Index offsets in the active continuation (AC) are explicitly set by the STPR (SeT

PRevious iteration), STCR (SeT CuRrent iteration), and STEC (SeT NeXt iteration)
instructions. Iterations are conditionally enabled by use of the STPC (SeT Program

Counter) and STIl (SeT IMport flag) instructions which set flags in the iteration

descriptor which, when all true, allow the corresponding iteration to begin. The
TSTL (TeST Loop termination) instruction tests for termination of an iteration by
examining the flags in an iteration descriptor.

The explicit TSTM (TeST 1 or 2 slots) and RSTM (ReSeT 1 or 2 slots) instructions are

not necessary in that their functions can be synthesized from other instructions. For

example, TST1 is the same as Movging a value, using the suspensive sub-addressing

mode, to another slot. RST1 is the same as nonsuspensively Mowing the contents of

a slot, using the nonsticky sub-addressing mode, to a scratch register. However, for

the sake of instrumentation, separate instruction codes are used in this study.

The branch-like opcodes do the obvious things, causing the PC in the continuation to

be replaced (conditionally or unconditionally, as appropriate). The cmi
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(CoNTINue) opcode creates (forks) a new continuation. The corresponding join
operation is implemented implicitly through frame slot synchronization. Cs

(CoNTinue and Test) is functionally identical to C"T (it is not a conditional fork),
but is used as part of an important optimization discussed in Section 4.3.7.

Allocation of processor and memory resources is viewed as the responsibility of the
architecture. However, the compilation target only includes the instructions used to
invoke some processor-local facility to request these services. Such instructions are

Was (MaKe I-Structure, the general case of a linearly addressed, 1-dimensional ar-
ray of slots with arbitrary lower and upper bounds - the instruction returns the base
address of the structure), uarv (MaKe I-Vector, the less general case of a I-Structure
whose lower bound is always 0), mzC (MaKe I-Cons, the less general case of an I-
Vector whose upper bound is always 1), GKTC (GET Context, which allocates an in-
vocation context somewhere in the machine for a given codeblock and returns the

base address of the frame), and RzTc (RETurn Context, which allows a context's

resources to be recycled).

Closures are represented as word-sized objects as in the TIDA [571. Closure
manipulation, therefore, amounts to little more than extraction, composition, and
simple arithmetic of short bit strings.

Architectural State

The primitive instructions which allocate and deallocate invocation contexts do so at
the level of codeblocks; an instance of an invoked codeblock is called an invocation
context or simply an invocation. A codeblock is a collection of SQ's, and may differ
from a user procedure depending on the compilation strategy used20. The state
visible to an executing codeblock (more precisely, to the continuations of its SQ's)

includes the slots in the invocation's frame, the general purpose registers, the I-

2°Aa presented in the Compiler chapter, a user procedure is translated into a set of codeblocks by
lambda-lifting [401 internal procedure definitions to top-level and replacing all instances of calls to
such procedures with partially-applied closures. Such lifted procedures are compiled separately. The
remaining procedure is examined for iterations and all but the first, outermost iteration is removed
from the procedure. The remaining code is compiled into a single codeblock. The extracted iterations
are further broken down into codeblocks (one iteration per codeblock). Hence, a single user procedure
containing internal definitions and multiple, nested loops will be compiled into a number of separate
codeblocks. This strategy is not the only one possible, but the rationale for splitting user procedures
along these lines does make certain architectural problems, such as allocating dynamic storage and
constant areas for loops considerably easier. The interested reader is directed to [571.
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Figure 3-4: The Hybrid Machine

Structure storage, and the descriptor for the current continuation itself. The
continuation's descriptor is the root of the accessible state. It points to the next

available instruction and to the frame. The frame is entirely local to the invocation.

3.3 Execution Models

In this section, idealized and realistic execution models are presented. At the coar-
sest level, both the idealized and the realistic machines share a number of common
characteristics. In overall structure (Figure 3-4, yet another incarnation of the

general model of Figure 2-1) they both follow the dance hall paradigm of a number of
identical processors on one side of a routing network, with a number of memory

modules on the other side of the network. A processor may send a message either to

a memory module or to another processor.

It is assumed that the memory units are actually I-Structure Storage units (per

[34]); their structure will not be reiterated here. It is sufficient to assume that the
storage units collectively implement a single global address space, and that each ac-

cepts requests to load, store, or allocate in a pipelined fashion. Further, the service

latencies (independent of communication latencies) for allocating or storing are as-

.1
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sumed to be bounded. The service latency for loading from an I-Structure is un-

bounded in that it implies synchronization.

The network's internal structure is of little concern here, save that the transit

latency through the network is some reasonably slowly-growing function of the num-

ber of inputs (e.g., log(n)), that messages can be accepted in a pipelined fashion, and

that the acceptance/delivery rate speed-matches both the processor and the struc-

ture memory. It is not essential for the sake of this study that the network preserve

orderings of messages; however, other higher and lower level concerns may deem it

essential.

Instructions may make operand references to a processor's registers or to slots in the

processor's large, local data memory. Slots may be read and written imperatively or

via the checking of synchronization bits associated with each word. The local

memory's synchronizing behavior is as discussed previously. Local memory is

referenced relative to a frame base address in the current continuation. Registers

are few in number, provide no means for synchronization, and are shared among all

continuations. Their contents cannot be considered valid across potentially suspen-

sive instructions.

3.3.1 The Ideal Procesor

The idealized hybrid architecture can be thought of as a von Neumann machine aug-

mented with a synchronizing local memory, and means for manipulating continua-

tions as first class hardware types (Figure 3-5, an embodiment of the concepts in

Figure 2-2). This machine has the following attributes:

* Each codeblock invocation is assigned its own local memory unit which
is only used for that invocation's frame storage. Connected to each such
local memory are processors - one for each continuation created by the
invocation. Each processor may operate on a single continuation if it is
active, or it may sit idle.

o Instructions are executed exactly when they are enabled. Each instruc-
tion takes unit execution time and, within any given continuation, in-
struction i which follows instruction i-1 must necessarily execute at
some time t, such that

ti~t _1+1

At any given time t, then, as many instructions will execute as there are
processors holding active continuations.
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* An instruction may access zero, one, or two operands, either in registers
or in the local memory (frame slots) without incurring a time penalty.
Processors sharing a local memory can access the memory without con-
flict. Processors may not access any of the other local memories in the
machine.

* Performing a synchronizing operand fetch from an empty slot in the lo-
cal memory causes the affected continuation to be removed from its
processor and to be stored in the empty slot. Multiple synchronizing
reads against the same slot cause additional continuations to be stored
in the same slot. Upon writing a value to a slot containing continua-
tions, the continuations are extracted and returned to their processors.

The idealized model provides a means for studying the effects that architectural and

compiler-imposed assumptions have on program execution free of further, hardware-

specific constraints. In the next Chapter, experimental results will be presented

showing the behavior of a number of programs under the idealized model. These

results will provide an interesting comparison to similar results from the TTDA.

Also, they will provide a backdrop for studying the behavior of the same programs

when executed on a realistic machine model which is discussed next.

8.3.2 The Realistic Processor

The idealized processor represents, in some sense, the best that any hybrid machine

can hope to do given the compilation constraints. In this section, the intractable

aspects of the idealized machine are explored in some depth, and architectural direc-

tions are identified which will result in a realistic machine whose behavior can

mimic that of the idealized machine in key ways. The basis of this discussion is a

concrete instance of a processor (Figure 3-6). In order to translate its physical

characteristics into constraints, its behavior will be described on a per-pipeline stage

basis.

Unrealizability

At the most basic level, tLe idealized model is unrealizable because

" The number of processors cannot scale with the number of continua-
tions. Processor resource must be shared across multiple active con-
tinuations. Further, at most one instruction from the set of all those
which are logically enabled may execute on any one processor at any
given time.

" Local memory ports cannot scale with the number of invocations. Like
processor resource, local memory must be shared.
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Figure 3-6: Abstract Realistic Processor

* Access to the local memory is subject to hard engineering constraints.
Unlike the idealized model which permits multiple accesses from mul-

tiple continuations at any given time, it will be difficult to provide access
to more than a handful of local addresses during a pipeline beat.

* Using local slots to hold suspended continuations is constrained by the
size of the slot: at most a single continuation can be stored into a slot.
Hence, queueing of multiple suspensions requires some additional
mechanism.

55

. .. .... ........... . . . . . . ,i .. . S ll I IllIF'



§ 3.3.2 A DATAFLOW ( VON NEUMANN HYDRID

C c-

Figure 3-7: The Realistic Processor

Also, the model of unit instruction execution time is subject to countless engineering
concerns. It is this issue which has made pipelining such a popular implementation

technique. By this method, the rate of dispatching instructions can be uncoupled

from the total execution time of any given instruction. The difficulty in pipelining a

processor arises when there are inter-dependences between instructions in the pipe.

6
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The model presented in the following sections is claimed to be realizable.

Instructions are dispatched into a rather shallow pipeline. Inter-dependence be-
tween instructions is managed with the aid of low-level context switching, made pos-
sible by the expression of programs as partial orderings of totally ordered chunks

(SQ's). This section briefly examines the hazards of trying to use a pipelined or-

ganization to mimic the behavior of the idealized machine.

At each time step, the ideal model will execute all and only those instructions which

are enabled. This implies a means for identifying the set of enabled continuations
and the corresponding set of enabled instructions. The former problem is easy to
deal with in a pipelined machine - continuations are always sorted by their state,

specifically, enabled continuations reside exclusively in their own queue or set of
queues. The latter problem is also relatively easy to deal with in a pipelined
machine. The PC in each enabled continuation denotes the instruction to be ex-

ecuted next. Given sufficient instruction memory bandwidth, all such instructions
can logically be fetched in parallel. The hard problem is to know which of these

instructions are actually executable.

In a dataflow machine, the construction of the set of enabled instructions is done
automatically by the waiting-matching hardware. In the hybrid machine, the ap-
proach is different - an instruction can be attempted, and if the synchronization con-

straints are not met, the instruction is aborted. Efficient means are available for
preventing busy-waiting (viz., storage of such suspended continuations in the frame

slot which caused the synchronization fault), but in a non-ideal setting, the cost of

the faulted instruction cannot be ignored. Moreover, in a real pipeline, several in-
struction dispatch cycles may pass between the time that a potentially suspensive
instruction is initiated until it can be determined that the instruction will actually

suspend. Careless dispatching of logical successor instructions behind a potentially
suspensive one can result in the flushing of not one, but many instructions depend-

ing on the pipe depth. The result on performance may be disastrous.

Given this, consider a method for approximating ideal behavior: means are provided
for pre-fetching a subset of the enabled instructions. At each time step, the instruc-
tion dispatcher may examine the pre-fetched instructions and choose between them

to optimize the behavior of the pipeline. How does the dispatcher make such a deci-

sion?
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Instructions are to be dispatched so as to keep the pipeline full of useful work.
Non-useful work includes execution of Nms (i.e., pipeline bubbles) and instructions
which suspend. Optimal dispatching of instructions is impossible without

foreknowledge of which instructions in the set will suspend. However, simple decod-
ing of instructions allows the dispatcher to at least know if the instruction cannot

suspend (eg., those which only reference registers or which make nonsuspensive
references to frame memory) or if it might possibly suspend. The strategy presented

below builds on this observation, attempting to dispatch instructions from a single

SQ instance until an instruction is encountered which might possibly suspend.
Dispatching from that SQ instance is deferred long enough to obviate the purging of

multiple instructions on the occasion of a fault. During this interval, inter-SQ paral-

lelism is exploited by dispatching instructions from another SQ instance. The num-
ber of such pre-fetched instructions is directly related to the number of stages be-

tween the dispatching stage and the fault-detecting stage.

lEnabled Suspended

IPCI FBRIPICINIM BIII

Figure 3-& Stage 1 - Continuation Fetch

Pipeline Overview

The pipeline is synchronous, with registers serving as inter-stage interfaces. In the
Figures, registers are depicted as short rectangular boxes with a heavy top-bar

(symbolizing an element with state). Stage boundaries are further emphasized with
dashed lines. At every pipe beat, each stage stores its current outputs into the ap-
propriate interface registers (see Figures 3-6 and 3-7).

Continuation Queues

The first pipeline stage is quite simple (Figure 3-8). Continuations are fetched on

demand from the second pipeline stage and are loaded into registers at the interface.
The enabled continuation queue holds those continuations which are in the enabled
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state, while the suspended continuation queue holds continuations which are waiting

on slots which already contain a suspended continuation. Continuations are fetched

from the enabled queue when it is nonempty. Only when the enabled queue is

drained is work fetched from the suspended queue.

Figure - Stage 2- Instruction Fetch / Dispatch

Instruction Fetch / Dispatch

The instruction dispatching logic (Figure 3-9) for the realistic machine is inherently

simple. Using two candidate continuations, two such enabled instructions can be

considered and the "better" one dispatched at each time step. At any given time, one

of the continuations will be called active, the other passive. During each pipe beat,

the PC's in each continuation are extracted and are dereferenced through separate

instruction caches in order to produce two candidate instructions 21. The instruc-

tions are analyzed according to the following rule22:

2 Implementing this function with two caches is simpler than a single, dual-ported cache, but the
performance is likely inferior. Because any continuation may be assigned to either interface register as
it goes through cycles of suspension and resumption, contents of both caches would tend toward the
some contents. By combining the storage, duplicate entries could be avoided and cache misses could be
reduced.

2It is assumed that TERMINATE instructions are not separately encoded but rather that the SQ
termination condition is indicated as an opode modifier for every instruction.
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Algorithm 3-10:

IF the active continuation causes a CACHE MSS,
THEN Refill the active cache.

IF the passive continuation causes a CACHE MISS,
THEN Refill the passive cache.

Restart (Pipeline Bubble ).
ELSE Dispatch the passive instruction23 .

IF the passive instruction is a TERMINATE
THEN Signal that the interface register should be refilled.
ELSE IF the passive instruction is neither SUSPENSIVE

nor a BRANCH
THEN Exchange the sense of active and passive.

ELSE Dispatch the active instruction.
IF the active instruction is a TERMINATE

THEN Signal that the interface register should be refilled.
Exchange the sense of active and passive.

ELSE IF the active instruction is either SUSPENSIVE or
a BRANCH24

THEN Exchange the sense of active and passive.

Dispatching means that the interface registers to the third pipeline stage are to be

loaded with the selected instruction and its corresponding continuation (Figure 3-7).

The continuation so loaded contains the PC pointing to the selected instruction, not

its successor. This PC must be carried forward in the event that the instruction

suspends.

By this method, instructions are dispatched from the active continuation until ter-

mination, dispatching of a suspensive instruction, cache miss, or branching. In the

case of branching, having another continuation on "hot standby" is a generalization

of the delayed branch paradigm in that low-level parallelism is used to mask the

effects of instruction fetch latency. The difference here, of course, is that the method
is dynamic. The compiler need not know precisely how long an instruction prefetch

might take. Moreover, unlike the delayed branch technique, a broader range of can-
didate instructions may be used to fil in the gap between a branch and the next

sequential instruction, such as instructions from disparate sections of the program

3'rhis algorithm relies on there being two banks of registers, active and passive, corresponding to
the active and passive continuations. This level of sophistication is not strictly necessary. In fact, the
realistic emulator used to evaluate this architecture does not interleave continuations in this way. The
performance penalty is program dependent, and the option to interleave at this level is left as an
engineering decision. The effects on locality are not well understood.

4Interleaving on BRANCH instructions forces the compiler to treat them as potentially suspensive.
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or even other branch instructions2.

For straight-line, non-suspensive code, instructions will dispatch sequentially, with
von Neumann like locality. For code with interspersed unconditional branches, two
separate continuations will tend to swap the processor between them - one will com-
pute while the other resolves a branch. Assuming that cache resolution takes about
the same amount of time as branch resolution, this behavior will also be observed in
the presence of cache faults. Only when synchronization faults occur will this be-
havior change. Thus, known-short latencies are masked by parallelism without sig-
nificantly degrading operand locality, and other latencies are masked by parallelism
with the cost in terms of lost locality being, to first order, proportional to the time
spent waiting for synchronization.

Dest Sd .ODSrc 1

r-

Figure 3-10 Stage 3- Operand Fetch

2his kind of parallelism and synchronization can also be used to mask the instruction fetch latency
of conditional branches, but the mechanism is necessarily more complex. One approach is to dedicate
additional instruction memory bandwidth to parallel exploration of conditional branch targets as in the
IBM 370/168 and its descendants. Another, less expensive technique is to refine the notion of suspen-
sion. In general, suspension due to a dynamic dependence across SQ's may take unbounded time to
resolve. The situation in the case of of the conditional branch is very different. The dependence upon
the conditional test will always be resolved within a pipe beat or two of successful operand fetch. For
this reason, it is worth considering removing the continuation from the active register upon dispatching
a conditional branch. If the boolean operand is not available, a normal suspension will occur. If the
operand is available, the continuation can be reinserted in the enabled queue (LIFO, perhaps) or into a
new queue which has higher priority than the enabled queue, once the correct PC has been determined.
Giving preferred status to this continuation assures that the presence of conditional branches does not
adversely affect locality.
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Operand Fetching

The operand fetching stage (Figure 3-10) takes a continuation and an instruction,

decodes the addressing modes, and fetches the operands (Opnd.0 and Opn&l in the

Figure). Each instruction has three fields for operand specification named Dest,

Source.0, and Source.1. Within each operand specifier is an addressing mode field

and a value field. Section 3.2.4 describes the addressing modes. These modes select

from among the different possible inputs to an operand register:

e Immediate: The value is found in the corresponding operand specifier,
i.e., an immediate for Opnd.0 would be found in the value field of
Source.0.

a Register: The value is found in the register file at the offset given in the
operand specifier.

* Frame Direct: The value is found in the local memory at the offset
given by adding the continuation's FBR to the offset given in the
operand specifier.

* Frame Indirect: The value is found in the local memory at the offset
given by adding the continuation's FBR and index register (P, C, or N in
the Figure) to the offset given in the operand specifier.

Computation of the destination address is also done at this stage. The result, which
specifies either a register or a local memory slot, is stored into the Dest I/A

(destination literal/address) interfakce register. This may involve either passing the

Dest field directly from the instruction (in the case of a register or literal) or modify-

ing it by adding the FBR and possibly an index register26 .

If either source specifier indicates a synchronizing reference, the corresponding

presence bits are tested. If a synchronization failure occurs (i.e., a required frame

slot is empty), an abort is signalled by transforming the instruction into a command

to suspend. Subsequent processing will ignore the operand registers and will cause

the continuation to be stored into the faulting frame slot. The address of this slot is

stored in the Dest L/A register in lieu of the actual destination address.

A special case of source addressing occurs when the destination address of the im-

mediately preceding instruction is the same as one of the source addresses in the

current instruction (the case of a sequential dependence). In this case, synchroniza-

"Having a literal" as a destination means only that the destination field contains a literal value to
be used in further computing the destination target for the instruction. An important application of
this option occurs in the UMNO instruction, described below.
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tion testing and operand fetching may be ignored, and the previous instruction's
result may be used directly as an input operand. This commonly-used technique is

called pipeline bypassing, and obviates pipe bubbles which would otherwise occur

while fetching a recently-computed result which has not yet been stored away.

IPCI&~AL FormICNIrML&[

'Im

Figure 3-11: Stage 4 - Computation

Computation

The computation section of the pipeline (Figure 3-11) seems anticlimactic when com-

pared to the previous pipeline stages. In this section, a new result is computed

and/or a network request (e.g., to initiate a LOAD, STCO, or SovI) is formulated. In

parallel, the destination address is copied to the corresponding interface register.

The ALU and Form Request units are conditioned on the Opcode which may indicate

a suspension - if so, the value loaded into the Result register is the continuation.
The destination address will have been set to denote the slot causing the

synchronization fault. All inbound network traffic is queued (FIFO) in this stage
and presented to the local memory via an interface register.

LC Reistere
Momn

Figure 3-12: Stage 5 - Result Store
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Storing of Results

As the last phase of instruction execution, the result is stored (Figure 3-12). The

Dest A (destination address) register indicates the target as local memory or the

register array, and specifies the offset. The value to be stored is found in the Result

register. Stores to the register array are straightforward, while stores to the local

memory require checking and updating of presence bits:

Algorithm 3-11:

IF presence bits indicate the slot currently holds a waiting continuation
THEN IF a continuation is being written

THEN Send the new continuation to the Suspended queue ("D").
ELSE Extract the stored Continuation

Send it to the Enabled queue ("C")
Write the value.
Set the presence bits to Written.

ELSE IF a continuation is being written
THEN Write the continuation.

Set the presence bits to Waiting.
ELSE Write the value.

Set the presence bits to Written.

Network responses are stored in the frame just as are non-continuations. They ex-

tract a waiting continuation and queue it, if there is one, and they set the presence
bits to Written.

Sequencing and Interlock

This section presents the temporal behavior of the pipeline. First, several instruc-

tion examples are given to show how various resources are used. Then, several

resource contention problems are investigated, and solutions are proposed.

Instruction Examples

The majority of instructions (e.g., arithmetic, logical, closure) execute by the

paradigm of performing synchronized or unsynchronized operand fetch, computing a

new value, and storing of that value. Selection of the next instruction to be executed
depends on the success of operand fetching, as described above, but the normal case

will choose the next sequential instruction. The flow of data for this class of instruc-

tions is shown in Figure 3-13. In this case, operands may reside in the frame or in

registers. Literal operands are also permitted but the data path is not shown in the

Figure (see Figure 3-7 for details). Presence bits are tested for any synchronizing
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Figure 3-13: Flow of Data for Normal Instructions

reference to the frame, and synchronization failure causes the instruction to be

aborted as described above. These instructions produce no network messages.

MOVR, the sole instruction for moving a datum from one execution context directly to

another, is shown in Figure 3-14. Operand Src.0 will be the frame descriptor of the
destination frame, and the Dest field will contain an immediate index into that
frame. Operand Src.1 will be the datum to send. Hence, only the frame descriptor
and the datum may cause a synchronization event. The main ALU adds the im-
mediate index to the frame descriptor, and the Form Request unit takes this result

and the datum, and forms a network request packet. Although not shown in the
Figure, it is possible for UOMt to suspend just as a normal instruction would. In this

case, the continuation would be stored as shown in Figure 3-13. NOVR initiates a
split transaction and does not block the pipeline awaiting the remote store. It is
possible to optimize this in the case that the destination frame resides on the same
processor - the result can be stored as in a Now instruction.

LOA takes an ISD and an index, computes an ISA by adding the index to the base

address in the ISD, computes the frame address into which the result is to be stored,
and forms a network request made up of the ISA and the FD. The flow is shown in
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Figure 3-14: Flow of Data for the m Instruction

Figure 3-16. Like M R LOAD initiates a split transaction operation. Unlike VR

the result can only return to the processor on which initiation took place. That is, at
some future time a network response will arrive carrying the requested datum, and
bearing the FD computed by the

STa takes an ISA and a datum, constructs a network request to store the datum at

the indicated address, and generates a signal2 7 .

As mentioned previously, the TSTM instructions are simply special codings of in-
structions which synchronize on one or two operands and which simply produce a
dummy result (such coding is used for instrumentation purposes only). ESTE is
similar in that is a special coding of a nonsticky to a null destination. These

sLogicany, this operation produces no local result. The ignal is necessitated for termination
detection as in the TIDA, but subject to the optimizations discussed in Section 4.3.5, i.e.,, that the
signal need only be tested across SQ boundaries. There ae many other instructions in the instruction
set which ]ogically produce no local result but which do not generate a signal. Signal generation is only
necessary to preserve the connectedness of the program graph - in the case of thes other instructions,
they are consistently used in such a way that the connectedness is guaranteed by other means. STOR
implements the second huf of the I-STORE program graph instruction snd necessarily must generate a

signal. See Section 4.3.5.
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Figure 3-15: Flow of Data for the LoAD Instruction

instructions reset the presence bits for one or two frame slots. The data flow is
straightforward and is shown in Figure 3-17. Neither a local result nor a network
request is produced.

The mm instruction executions fall into the following categories:

" Synchronization Failure: The predicate argument is read with
synchronization enabled and the value is not present. This results in a
standard suspension as per the normal case. The unmodified continua-
tion is stored into the predicate slot.

" False Predicate: The predicate argument is read and the resulting test
computes FALSZ. The PC is incremented in the main ALU, and the con-
tinuation is re-queued.

" True Predicate: The predicate argument is read and the resulting test
computes TRU. The instruction-specified target, interpreted as a rela-
tive offset, is added to the PC in the main ALU and the resulting con-
tinuation is re-queued. This case is shown in Figure 3-18.

The cmT opcodes are similar. CIT fabricates a copy of the existing continuation in

the main ALU by adding the relative target to the current PC, and then queueing it

as an enabled continuation, (without suspending the current continuation). CNT
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-- -0 -~ -------- -------

Figure 3-16: Flow of Data for the STOR Instructon&

provides a slight variant in that it tests the given slot in conjunction with building a

~new continuation. If the slot has not been written to, the new continuation is stored

directly into it. Otherwise, the new continuation is queued. The intention is to

avoid wasting cycles scheduling a continuation which will predictably suspend.

To support multiple, concurrent iterations, each continuation contains three index

registers (P, C, and N, for previous iteration, current iteration, and next iteration,

respectively) which may be used via the frame indexed operand addressing mode.

Each iteration has an area of the frame set aside for it (the format is shown in
Section 4.3.4), and the first slot is reserved for an iteration descriptor whose struc-

ture is identical to that of a continuation, save the replacement of the frame base

register in the continuaticn with a set of boolean flags. These flags indicate the

~necessary iteration enabling conditions described in Section 4.3.5, specifically, that
the i- s iteration's predicate has computed a TRUE predicate (CNTLi.1) and that the
i.K+l1 t iteration has ended (IMdPTi.K+z). These iteration descriptors are precomputed

b and loaded into the 0 th slOts of each iteration subframe, and are used in the con-

struction of continuations when iterations become enabled.
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--- --------IIN . ..

Figure 3-17: Flow of Data for the RSTN Instruction

The STNX, STcR, and STPR instructions are monadic and have the side effect of in-

serting the next, current, and previous iteration indices, respectively, into the cur-
rent continuation. The IXID instruction behaves as a normal, dyadic instruction,

and has the effect of incrementing all three indices in an iteration descriptor by the

same amount 28 . TSTL is dyadic and is used to detect termination of the iteration

clean-up code as a necessary precondition to exiting the LOOP.

STPC and STIM are slightly more complex. STPC sets the PC field of the iteration

descriptor and also asserts the CNTLi condition, i.e., it sets the flag. STIM sets or

resets IMPT i. In addition, both of these instructions check the flags to see if the cor-

responding iteration has become enabled. If so, a continuation is fabricated by sub-

stituting the current FBR from the current continuation into the iteration descrip-

tor, thus creating a new continuation. This continuation is queued, and the itera-

tion descriptor with both flags reset is stored. If instead the iteration is not yet en-

abled, the iteration descriptor is simply stored; no continuation is fabricated. The

flow is shown in Figure 3-19.

The maC, IS, NKIV, GETC, and RKTC instructions provide linkage to local

managers (they may be thought of as supervisor calls). The opcode implicitly

specifies a code entry point at some fixed address in program memory, and the in-

struction denotes the arguments to be passed nd the destination target. No state-

2'1t is a straightforward matter to logically partition a wide ALU/adder into several smaller
ALUs/adders by appr(pilate gating in the carry lookahead logic, thereby permitting IXID to execute
three additions in a Pi ngle cycle.
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Figure 3-18: Flow of Data for the 3m Instruction

saving takes place, and it is a matter of choice as to whether these instructions are
always considered to be suspensive (independent of addressing modes). It is believ-

able that certain managers could be written as nonsuspensive routines and, there-
fore, that the manager-calling instruction could be treated as such. In the general
case, however, the manager-calling instruction is an abstraction of an arbitrary code
sequence underneath. It is safe for the compiler to view manager calls as suspensive
(meaning that the compiler does not rely on the contents of registers across the call).

Because manager calls represent an implicit break in the flow of control, the instruc-
tion dispatcher will have to forestall the dispatching of other instructions from the
same continuation by treating a manager call as branch-like.

With this understanding of the basic operation of each instruction, attention now
turns to the effects of instruction sequences, e.g., network loading, pipeline balance,
and resource overcommitment.

Network Traffic Load

There is an important asymmetry between the ALU's path to the local memory and
the network's path. Given ongoing contention between these two paths for the local
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Figure 3-19: Flow of Data for the STPC Instruction

memory, it is possible to consider suspending the ALU path (and thereby holding up
the entire pipe) in order to resolve the conflict. Choosing instead to suspend the

network path admits the possibility of deadlock. This does not mean, however, that

a given network response must take absolute priority over all instruction results in

competing for access to the local memory. Rather, the last pipe stage is free to hold

the store for a network response in abeyance until the execution of an instruction
which produces no local result subject to the constraint that the network response

queue does not overfill. At the system level,

* The number of network responses is equal to the sum of LOAD and non-
local -1FvoR instructions.

m The number of time-slots for handling network responses is the sum of
instructions producing no local result, specifically, LO , RSTn, oe,
CvnX, and non-local mOVRi

It is a matter for further analysis to determine the relationship between the neces-

sary queue size as a function of the statistics of Rte, exeo, and CTX instructions.

The difficult issue will, of course, be locally significant variations from average num-
bers, causing response queues to fill. In order to guarantee that a processor can

always accept network responses, queue filling should be a sufficient condition for

pipeline suspension to allow responses to be stored.

Ti
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Figure 3-20: Local Memory Subsystem with Cache

Overcommitment of the Local Memory

Despite the machine's appearance as a simple five-stage pipeline, in reality the third

and fifth stages share key resources, viz., the register file, the presence bits, and the

frame store. In any one pipe beat, two operands will be fetched for the current in-

struction, one result will be stored for a preceding instruction and, if that result is

destined for a frame slot containing a continuation, the continuation must be

fetched. Building a small register file which supports two reads and one write in a

pipe beat is entirely reasonable. Presence bits are harder to handle both because

there are more of them (a few bits per local memory slot) and because of the need for

three reads instead of two. The hardest problem, however, is implementing three

reads and one write for the local memory.

One approach, used in the IBM 43xx and in other machines, is to observe that the

address for the write operation is available at the very beginning of each pipe beat,

while the read addresses must be computed and will therefore not be available until

later in the cycle. There is, therefore, an opportunity to reduce the number of simul-

taneous accesses by performing one access (either reading a stored continuation or

writing a new value) prior to performing the operand fetches. With a memory whose

cycle time is half a pipe beat, the requirement can be relaxed to two reads and one

write instead of three and one. Building a two-read, one-write memory then re-

quires simply duplicating the memory with the appropriate cycle time constraints.
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This is both wasteful and impractical for large memories. Another tack is simply to
suspend pipeline operations until all local memory operations can be resolved.
Thus, if the memory runs at the rate of one access (read or write) per minimum pipe

beat, three references will cause the introduction of two additional bubble cycles
downstream in the pipe. This technique can be practical, however, when instruction
statistics indicate an average of less than one frame access per instruction (e.g.,
register-intensive sequential threads). An extreme instance of this is to impose con-
straints on the compiler which explicitly limit the number of local memory
references as a function of time.

A better solution is to exploit the locality that the machine works so hard to

preserve. By introducing a tri-ported, store-through operand cache in parallel with
the local memory, it is possible in principle to significantly reduce the number of
read requests which the local memory must satisfy to the point where it only
handles writes (one per beat). Such a cache subsystem is depicted in Figure 3-20.

Possibly the best approach would be to use a pipelined local memory subsystem

[381 whose pipe beat is significantly faster than that of the processor. This ap-
proach is not investigated here. Another technique not studied is to avoid storing

continuations in frame slots entirely and instead to use the Suspended queue to con-
tain all suspended continuations. This has the advantage of reducing the absolute
worst-case requirements on the frame to two reads and one write per cycle. The

potentially deleterious effects on locality and exposed parallelism of this technique

are not well understood.

Exploiting Parallelism

It is worth reviewing how all this mechanism allows the exploitation of the various

forms of parallelism outlined in Section 2.4.

Expression-level parallelism is best used for masking latency by keeping
the pipeline full, as in a von Neumann machine. The sequential dis-
patching of instructions from a given instance of a given SQ allows ex-
actly this behavior. Fast context switching between SQ instances
(continuation exchange at the instruction dispatch stage) further allows
low-level parallelism to be used in masking latency. The manner of
using registers between suspensive instructions allows high-speed, mul-
tiport access to data while keeping the cost of context switching very
low.

" Inner-loop parallelism is supported by representing each loop as a
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codeblock and providing efficient means for sending data between
codeblocks. The mechanisms here are the azTC/fTC instructions for
allocating and deallocating contexts, the MOVR instruction for argument /
result transfer, and the fine-grained synchronization on frame slots
which can be used to support nonstrict invocations (at the same level is
procedure call parallelism - the same mechanisms can be used).
Outer-loop inter-iteration parallelism is supported by representing the
storage for an iteration explicitly, and allowing multiple storage areas to
be named and addressed. The mechanisms provided include the
continuation-specific index registers, iteration descriptors, and instruc-
tions for manipulating them (setting, testing, and conditionally
scheduling).

Modeling Latency

For the purposes of performing the emulation study presented in the next chapter,
some assumptions must be made regarding latencies. In fact, transit latency is left
as a degree of freedom and, in the experiments, latency will be varied to measure the
latency-tolerating effectiveness of the model. It will be assumed throughout,
however, that instruction service latency (the pipe beat) is unity, and that the I-
Structure storage processor is similarly pipelined.

Handling Finite Resources

Questions of how this architecture manages its finite resources are beyond the scope
of the present work. It is claimed that solutions applicable to machines such as the
TTDA are equally applicable here because of the following relevant architectural
similarities:

* Demand for context-specific storage is not only bounded, but is known a
priori. Each codeblock carries with it a record of the number of frame
slots necessary for invocation (the actual value is a function of K, the
invocation-time parameter which controls loop unfolding). It is a purely
local decision to determine if a given processor has sufficient space to
invoke a given codeblock with a given value of K.

e Register requirements are likewise bounded at compile time.

" Invocation requests are processor-nonspecific. The response to a GZTC is
a frame descriptor which identifies both the frame base address and the
processor in which the frame resides. Thus, if a local manager cannot
satisfy a GZTC request based on local information, the request can be
handled by any other processor in the machine. The question of how
best to to make such decisions is an open problem for this machine, the
TTDA, Monsoon [47), and other similar machines.

" The queue overflow problem, related to the codeblock invocation
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problem, is analogous to the same problem on machines like the TTDA
and Monsoon. One minor difference is that those machines queue con-
tinuations for single instructions, while the hybrid machine queues con-
tinuations for SQ's. That is, because expression-level parallelism is
represented by properly-ordered sequential code in the hybrid model,
there will necessarily be fewer extant continuations at any given time
during program execution than in a machine supporting single-
instruction parallelism. This has some engineering, but little theoreti-
cal, significance.

* As in the TTDA and Monsoon, and unlike machines such as MASA
[30, 33, 541, there is no notion of migrating or transporting a "task" and
its state to another processor after invocation.

3.4 Summary

Latency and synchronization have been shown to be fundamental issues in the

development of scalable, general purpose multiprocessors, and the issues seem re-
lated in fairly incestuous ways. Basic changes to traditional architecture are neces-

sary for dealing with them. One such change is that the execution time for any
given instruction must be independent of latency (giving rise to split transactions).
A second change is that synchronization mandates hardware support: each
synchronization event requires a unique name. The name space is necessarily large,

and name management must be efficient. To this end, a compiler should generate
code which calls for synchronization when and only when it is necessary. A natural

approach is to extend instruction sets to express the concepts of both implicit and
explicit synchronization. Such an instruction set, which captures the notions of

bounded instruction execution time, a large synchronization name space, and means
of trading off between explicit and implicit synchronization is called a parallel

machine language.

A compilation target has been defined which satisfies these requirements. The in-
struction set is not unlike that of a von Neumann machine but has been explicitly

augmented with synchronization bits on each local memory slot, addressing modes
to support synchronization, instructions for dynamic resource allocation, and an ex-

ecution model which admits concurrent execution of declared sequential threads.
Ideal and realistic execution models have been developed. Basic engineering con-
cerns regarding realizability have also been addressed. It has been claimed that this

architecture is capable of exploiting the same types of parallelism as a dataflow

machine, albeit in somewhat different ways. If true, this architecture is
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demonstrably superior to a von Neumann machine for the purpose of building a scal.

able, general-purpose parallel processor.
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Chapter Four

Compiling for the Hybrid Architecture

This chapter considers the task of transforming dataflow program graphs into par-

titioned graphs, and thence into PML Section 4.1 examines dataflow program

graphs as the input language for the code generator. Section 4.2 discusses the
issues involved in generating partitioned code from graphs. Section 4.3 presents the

design for a working code generator which addresses these issues.

4.1 Dataflow Program Graphs

Dataflow program graphs [571 are a powerful and elegant intermediate represen-

tation for programs. They are largely architecture independent, and have a precise

semantics. In this section, the structure of dataflow program graphs [57) is

reviewed through the use of an example. Dataflow program graphs form the basis

for the compiler work presented here; an understanding of their overall structure

and the semantics of the instructions contained therein is essential.

4.1.1 Expressions

This section examines the instructions that make up this program fragment's graph,

the types of data which traverse the arcs of the graph, and the presumed execution
rule. Recall that the code for WaveFront's doubly nested loop looks like this:

(for £ from 1+1 to u do
(for j from 1+1 to u do

m[i,j] - (m[i-1,J) + m[i,j-1) + m(L-1,J-1) / 3;))

Figure 4-1 shows the program graph as generated by the Id compiler. Given the
value of j, three elements are fetched from the matrix, they are arithmetically

averaged, and the result is stored into the matrix. The matrix is represented as a
column-vector of I-Structure descriptors for the rows. Fetching the ijh element,

then, requires first fetching the ith I-Structure descriptor from the column-vector

and then fetching the ith element. Because of the addressing pattern implicit in the
expression, the graph for the body of the inner loop requires the I-Structure descrip-
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Figure 4-1: Program Graph for WaveFront's Inner Loop Body
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tor of both the jth and i-lst rows. Furthermore, because these descriptors are in-

variant across iterations, their fetching from the column vector has been lifted out of

the loop.

In execution, data values are represented as logical entities called tokens which ap-

pear to flow across the arcs from one instruction's output to another's input.

Instructions may be executed when and only when their firing rule is satisfied. The

firing rule is a predicate on the presence or absence of tokens at the instruction's
inputs. A token is said to be present on a given input of a given instruction if and

only if a token has been placed on the corresponding arc. Firing, or executing, an

instruction consumes tokens on input arcs and produces side effects and/or tokens

which are placed on output arcs.

Consider first the inputs to this graph. The most obvious is the integer value of j,
the inner loop index. Implicit in the semantics of the LOOP-CONSTANT instructions

are other execution-context specific inputs.

ILOOP-CONSTANT Instructions: Within the basic blocks of a
OW LOOP instruction (below), these retrieve a particular loopLconstant value upon receipt of a trigger. They produce no

side effects.

In the case of the graph shown here, first loop constant (LOOP.0) will be the I-

Structure descriptor for the i-18t row of matrix M. The second loop constant

(LOOP.1) will be the I-Structure descriptor for the ith row. These descriptors are

"produced" when the trigger, i.e., the loop index, becomes available.

In addition, literal input values are also explicitly represented in the program graph.
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LnSAL Instructions: These produce literal constant tokens

(..NT 8) when a trigger arrives. They produce no side effects.

Thus, loop constant and literal inputs to a graph are not represented as tokens until

an appropriate constant instruction generates them. In the case of the WaveFront
graph, then, no computation will take place until the token carrying the value of]

arrives.

Arithmetic and logical operations are represented in the graph by monadic and

dyadic instructions, as appropriate.

MONADIC/DYADIC Instructions: These include the usual

spectrum of arithmetic and logical operations. These in-

,, .~ l I ,structions fire only when all input tokens are present,

+ produce an output token, and have no side effects. A num-
IP ber of special monadic instructions extract fields (codeblock

name, argument chain) from closures and have no side ef-

fects.

In the example graph, it is now easy to see how the indices for the three I-Structure

references are expressed: addressing of the it and i-18t rows is done by selecting the

appropriate I-Structure descriptor. In this case, since the descriptors were loop in-
variants, this means simply using the right loop constant. Addressing of the par-

ticular element in the row is done via the I-FETCH instruction and the appropriately-

calculated index.
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I-FETCH Instructions: Given a token carrying an I-Structure

descriptor and a token carrying a slot offset, these instruc-

1 tions fire and produce a token which is the value of the

I-FETCH given slot of the given structure. TUFLE-FETCH instructions
OW4a are similar, except that the offset is coded as a parameter of

the instruction itself. HD and TL instructions are also

similar, except that the offset is implicit in the opcode.

Thus, the three I-FETCH instructions will fetch, respectively, elements i-IS, ij-1, and

i-1j-1. These values are averaged, and the result is stored in element ij.

I-STORE Instructions: Given a token carrying an I-Structure

descriptor, a token carrying a slot offset, and a token car-

S Ind=Vd rying a value, these instructions fire, write t1- value into

I-STORE the given slot of the given I-Structure (a side-effect), and

produce a signal token. TUPLE-STORE instructions are

similar, except that the offset is coded as a parameter of the

instruction itself. STORE.HD instructions and STORE-TL in-

structions are also similar, except that the offset is implicit
in the opcode.

The sole explicit output of this expression is the signal emanating from this I-STORE

astruction.

4.1.2 Loops

This expression is compiled into the textual context of a LOOP instruction (Figure

4-2). LOOP is an abstract representation of an instruction schema which Traub

[57] refers to as an encapsulator: in addition to its exterior surface, it has interior

surfaces which enclose other program graph instructions. Sets of instructions so

enclosed by a given input/output surface pair are called basic blocks.
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Figure 4-3: Program Graph for WaveFront's Inner Codeblock
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LOOP Encapsulators: These encap-
'_LOOP .___0... - sulate a Predicate basic block and a

B ody b as ic b loc k , a n d h id e t h e details

of loop invocation, loop constant

management, bounding, and recycling
SPredice of per-iteration resources. Upon ar-

rival of the loop constant tokens and

p .orq o ... M-1 P,, any loop input tokens, the predicate is
D O... -1[ Revaluated, producing a boolean token.

0*0 If TRUE, the loop body is executed,

producing a new set of loop variables

which are recirculated to the predicate

associated with the next iteration. If

OPo,*,Lo ... *-IJ FALSE, the loop variables are routed to

the output of the LOOP encapsulator.

In the Figure, the predicate consists of a relational instruction which compares the

loop index j with the loop limit (available as the third loop constant, LOOP.2). The
body consists of the entire graph of Figure 4-1, instructions to increment the loop

index, and a signal-tree instruction which tests for termination of the iteration.

I I SIGNAL-TRZE Instructions: These produce a signal token
)*%to ... 0-1

when tokens have appeared on all inputs. They produce no

side effects.
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4.1.3 Codeblocks

As described previously, the compilation of a procedure will result in the creation of
one or more codeblocks subject to the constraint of one loop per codeblock. Hence, in
a nesting, inner loops such as this one are always contained in a separate codeblock.
See Figure 4-3. The codeblock invocation and parameter passing mechanisms are
represented abstractly by the FASTCALL-DEF encapsulator. Codeblocks for a
procedure's top level are encapsulated in the related DEF encapsulator.

DEF Encapsulators: These enclose the bodies of
codeblocks, and hide the details of parameter pass-

ing and argument chain unpacking. They are im-
Body plicitly triggered by invocation of the codeblock by

an appropriate APPLY-like instruction. DEF encap-

Ron& sulators have no inputs or outputs on the exterior

surface, and enclose only a single basic block called
the Body. Outputs which feed the body are the
codeblock's arguments and a trigger. Inputs are the
codeblock's result and a termination signal.

FASCALL-DEF encapsulators are similar except
that they perform no argument chain unpacking

and may have multiple result inputs.

Although not shown in the example graph, codeblocks are invoked with the APPLY

and FASTCALL-APPLY instructions, as appropriate.
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APPLY Instructions: These accept a closure token and an ar-

gument token. If, given the argument the arity of the

C= A w codeblock denoted by the closure is satisfied, the codeblock is

APPLY applied to the arguments collected in the argument chain
along with the argument on the input token. If the arity is

not satisfied, a new closure is created which is a copy of the

input closure save that the argument chain has been ex-
tended with the new argument. DIRECT-APPLY instructions

accept a codeblock descriptor and a set of arguments. The

codeblock is applied to the arguments. APPLY-UNSATISFIED
instructions behave like APPLY instructions with the excep-

tion that it is assumed the arity will not be satisfied by the

argument. In all cases, codeblock application is strict in the

closure or codeblock descriptor but nonstrict in the ar-
guments. Also, such codeblock application will return at

most a single result. FASTCALL-APPLY instructions are
nearly identical to DIRECT-APPLY instructions save that they
may return multiple results.

The DEF- and APPLY-like instructions presume the following skeletal procedure

linkage mechanism. Codeblocks may represent top level procedures, e.g., user

procedures or lambda-lifted internal definitions, or they may represent inner loops.

The procedure linkage conventions are different for the two cases.

Top-level procedures are represented at the program graph level by a DEF encap-

sulator enclosing the procedure body. The implied protocol between an APPLY in-

struction and the corresponding DEF involves

1. Notifying a resource manager to set up a suitable execution environ-
ment for an instance of the invoked procedure (APPLY).

2. Forwarding of the argument chain and the last argument, when avail-
able, to the invoked procedure (APPLY).

3. Returning of the result (if there is one) to the invoker (DEF).

4. Returning of a termination signal to the invoker (DEF).

5. Notifying a resource manager to deallocate the execution environment
(APPLY).

The DEF is responsible for unpacking the argument chain (an I-Structure) then feed-
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ing these values, when available, plus a trigger to the body. The same DEF is also
responsible for fielding invocations where the argument values are sent directly
from the invoker, bypassing chain construction and unpacking (this is the
DIRECT-APPLY variation on procedure invocation).

Internal loop codeblocks are represented at the program graph level by a
FASTCALL-DEF encapsulator enclosing the codeblock body. The implied protocol be-
tween a FASTCALL-APPLY instruction and the corresponding FASTCALL-DEF involves

1. Notifying a resource manager to set up a suitable execution environ-
ment for an instance of the invoked codeblock (FASTCALL-APPLY).

2. Forwarding of the arguments, when available, to the invoked codeblock(FASTCALL-APPLY).

3. Returning of the results to the invoker (FASTCALL-DEF).
4. Returning of a termination signal to the invoker (FASTCALL-DEF).

5. Notifying a resource manager to deallocate the execution environment
(FASTCALL-APPLY).

The major difference is that there is never an argument chain. Arguments are al-

ways sent as in DIRECT-APPLY. Further, there may be multiple results.

4.1.4 Misceflaneous

On occasion, it is necessary for the compiler to represent explicit copying of a value.
In other situations, it is necessary to control the visibility of a value until some con-
dition has been satisfied (gating). Both of these operations are handled by the
IDENTITY instruction.

IDENTMT Instructions: These produce an output token
which is a copy of the first input token. In practice, Identity

1D instructions may have additional trigger inputs which are

IT necessary for firing but which otherwise take no part in the
production of the output token. They produce no side ef-

febcts.

The general case of conditional execution is expressed by the IF encapsulator:

87



f 4.1.4 COIPIINDG FOR TH HYBRID ARCEUTCTtM]B

IF Encapsulators: These encapsulate a
Then basic block and an Else basic block.
Upon arrival of a boolean token at the

predicate input, subsequent data tokens
arriving at IF inputs are routed ap-

propriately to either the Then or Else
Thmo*PO .W1 9o-d0.O .- I blocks. Outputs from the Then or Else

blocks are passed to IF outputs.

Finally, the explicit allocation of I-Structure storage is represented by the
MAKE-I-STRUCTURE instruction.

MAKE-I-STRUCTURE Instructions: Upon arrival of a token in-
dicating a lower bound and a token indicating an upper

L UW LPP bound, these have a side effect of allocating an I-Structure of

I-STRUCTURE the indicated size out of the available I-Structure storage,
OWPi and producing a token which carries an appropriate I-

Structure descriptor. The MAKE-TUPLE instructions are
similar, but the lower bound is assumed to be zero.
Likewise are the MAKE-CONS instructions, but both lower
and upper bounds are assumed (0 and 1) and produce a
descriptor upon receipt of a trigger. ARRAY instructions al-
locate and produce a token describing a multi-dimensional
array of I-Structure elements given a set of lower and upper

bound tokens as input. MAK-RIG instructions are
similar to MAIXTUPLE instructions, but they not only al-
locate a structure, they also store the characters of the given
string into the structure. The cLoSURE-NCDR instruction is

functionally related, in that it extends a closure's argument
chain by allocating a CONS cell and then building a new

closure using the extended chain.
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4.1.5 Data Types

Tokens in dataflow program graphs may represent scalar values or pointers to I-

Structures. Scalars may be integers, floating point numbers, booleans, or symbols
(e.g., codeblock names). I-Structure descriptors (references to CONSes, tuples,
strings, vectors, structures, or arrays) and Closure descriptors are both pointers.

Excepting certain special monadic and dyadic instructions not described above, this

set of data types is dosed under the operations defined by the program graph in-

struction set.

4.2 Strategic Issues for Partitioning

Following the generation of program graphs, the remainder of the compiler for the
TTDA consists of macroexpansion of the encapsulators, transliteration of low-level

graph instructions to actual machine instructions, peephole optimization, and as-

sembly. For the hybrid machine, however, the program graph must first be par-

titioned into SQ's. This section investigates the issues of doing so.

4.2.1 Possible Constraints

Graph partitioning for the PML model may be done in a number of ways. Issues of

concern include

*Maximization of exploitable parallelism: Poor partitioning can
obscure inter-procedural and inter-iteration parallelism. The desire to
aggregate instructions does not imply any interest in restricting or limit-
ing useful parallelism - in fact, those cases where instructions may be
grouped into SQ's are quite often places where parallelism is exploited
in instruction ordering to mask latency.

* Maximization of run length: Longer SQ's will ultimately lead to
longer intervals between context switches (run length). Coupled with
proper runtime support for suspension and resumption, this can lead to
increased locality. Run lengths which are long compared to the pipeline
depth have a positive effect on shortening critical path time and increas-
ing locality. Short run lengths (frequent instruction aborts due to
suspension of a frame reference) tend to bubble the pipeline.

* Minimization of explicit synchronization: Each arc which crosses
SQ boundaries will require dynamic synchronization. Since
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synchronization operations are pure overheads, it is desirable to min-
imize them.

* Deadlock avoidance: Non-sequentiality and lenience imply that in-
struction execution order cannot be made independent of program in-
puts or, said another way, instruction execution order cannot be deter-
mined a priori. It is necessary to understand where this dynamic order-
ing behavior will manifest itself in the generated code. Such dynamic
ordering must be viewed as a constraint on partitioning since two in-
structions whose execution order is dynamically determined cannot be
statically scheduled in a single SQ.

Maximization of machine utilization: Given a set of costs for in-
struction execution, context switching, synchronization, and operand ac-
cess, partitions can be compared on the basis of how well they "keep the
pipeline full". This metric is fairly machine specific and is in that sense
less general than those previously described but no less important.

4.2.2 Scope

It is not the focus of this work to develop optimal partitioning techniques, but

rather, to develop an architecture which can adapt to a spectrum of partitioning

strategies per the requirements of the programming language. To that end, this

study focuses on development of a safe (deadlock-avoiding) partitioning algorithm for

Id graphs. This choice is based on three important facts:

1. Availability of Tools: At the most pragmatic level, the Id compiler is
highly accessible, and provides an excellent vehicle for constructing a
prototype hybrid code generator.

2. Availability of Data: Id applications have been well-studied on the
MIT Tagged-Token Dataflow architecture. By using these same ap-
plications, meaningful architectural comparisons can be made.

3. Difficulty of Partitioning Safely. Because Id is a lenient language,
it does not admit simple, sequential interpretation [591. In that sense,
efficient support for a lenient language will be harder to provide (read:
will depend more on efficient dynamic synchronization) than will sup-
port for non-lenient languages.

Traub [59] investigates partitioning rules which are provably both safe and efficient.

It is his goal to develop the means for maximizing sequential thread size given these

9Coming from a von Neumann uniprocessor mind set where explicit synchronization is virtually
unheard of except in situations which require multitasking, it is natural to view synchronization in this
way. Coming from the dataflow world where synchronization is unavoidable in every instruction
execution and where there is no opportunity to "optimize it out", it is also reasonable to view explicit
synchronization instructions as overhead. In a later section, these perspectives are reconciled with the
view that explicit synchronization instructions are both necessary and, in some sense, beneficial.
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constraints. For the purposes of developing the present architecture, the latter con-

straint has been relaxed, thereby putting the burden back on the architecture of

handling even very small threads efficiently.

4.2.3 Examples

A C

A C

F ER

SQ.O SQ.1

sq.o SQ. D D
D D

Figure 4-4: Partitioning which Leads to a Static Cycle

Safe partitioning involves the analysis of both the static structure of a dataflow
graph and the dynamic behavior of the graph. This dichotomy leads to two distinct

kinds of partitioning problems. Consider first the graph fragment in Figure 4-4. In

this example, an acyclic graph is partitioned into two SQ's, each to be executed se-

quentially. If the partitioned graph is viewed in the abstract with Sq's as the graph

nodes, it is curious that the trivial, acyclic graph now has a cycle in it. This results

when additional control arcs are inserted. Because this kind of cycle is a function of

the graph's static structure, it is called a static cycle.

A very different kind of problem is illustrated with the following Id program frag-

ment:
( - vector (0,2);
a[Ol - 0;
a(1] a []i + 1;
a(21 - a[j) - 2;

in al) - a[2])

and its associated graph30 in Figure 4-5. I-FETCH instructions are assumed to follow

"The descriptor for vector A is depicted an a constant to simplify the drawings. This is done without
loss of generality.
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i j
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I-STORE II-STORE

Figure 4-5: Graph Fragment

split transaction semantics with a non-busy waiting deferred read mechanism [351.

Such a graph would terminate under a dataflow instruction execution rule.

However, without exercising some care, partitioning this graph into SQ's can lead to

deadlock. Putting all of these instructions into a single partition won't work, nor

will a partitioning such as that shown in Figure 4-6. Such partitionings result in

code which may never terminate, despite the absence of static cycles.

The problem, of course, is that the actual instruction execution order in the dataflow

case depends on the indices used in the structure operations, where no such depen-

dence is allowed in the partitioned case. Figure 4-7 shows two instruction execution

orderings which must be possible in any correctly compiled version of this program.

These orderings demonstrate the dynamic dependences between I-STOREs and

I-FETCHes. If these dependences were fixed, and if it were possible to determine

them at compile time, SQ partitioning to avoid deadlock would be straightforward.

Since this is not the case, the problem is one of developing a safe partitioning

strategy which is insensitive to the arrangement of dynamic arcs. One approach is

to make each partition exactly one instruction long, i.e., the dataflow method. This,

of course, is at odds with the desire to exploit static scheduling.
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STOR A.1.R2 ADD R3,R1.R2
LOAD R1.AJ
MD 32 R1.2
STOR A. C.2

Figure 4-6: Partitioning which Leads to a Dynamic Cycle

4.2.4 Latency-Directed Partitioning

Extant partitioning algorithms [12,27] can be classified as depth-first or

breadth-first. Depth-first algorithms [121 partition by choosing a path from an input

to an output of a graph and making it into an SQ, removing the corresponding in-

structions from the graph in the process. The algorithm is repeated until no instruc-

tions remain unpartitioned. Such partitionings tend to be the best at minimizing

critical path time and rely heavily on pipeline bypassing since, by definition, instruc-

tion n depends directly on instruction n-1. Breadth-first algorithms [27] tend to ag-

gregate instructions which have similar input dependences but only weak mutual

dependences.

It is interesting to observe the relationship between the problem of partitioning a

dataflow graph and the dynamic "partitioning" of a program which occurs in a mul-

tiprogramming environment. Aside from the discretionary kind of context switching

which occurs to guarantee fairness among competing tasks, context switching is
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Figure 4-7: Input Dependent Execution Order

most often invoked when the running program attempts to synchronize with a long-

latency parallel activity, e.g., reading from a disk. Note that it is not in general the

initiation of a long latency operation which causes the context switch. It is the at-

tempt to waste time by waiting for the satisfaction of a synchronization constraint.

Elaborate mechanisms are designed into such operating systems to allow the wait-

ing task to be put aside and then re-awakened when the event being waited on hap-

pens. For such a system to work, the time to switch contexts must be significantly

shorter than the time which would, on average, be wasted in waiting.

It is possible to identify the arcs in a dataflow graph which represent long latency

operations and the attendant required synchronizations. It is natural to pursue this

analogy and to perform SQ partitioning such that no useful work winl be postponed

simply because a part of the program is waiting for the result of such a long latency

operation.

A necessary condition for this kind of analysis is that all such arcs are manifest in

the graph, and that none are implicit in the internal behavior of an instruction.

P .,iewing the dataflow program graph instruction set shows that this condition is

vivlated in several instances:
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* APPLY and FASTCALL-APPLY hide the procedure linkage arcs, in par-
ticular, the argument and argument chain arcs which must be
synchronized at the called codeblock, and the result and signal arcs
which must be synchronized at the caller.

" DEF hides the argument chain unpacking (I-Structure references).

The obvious source of long-latency operations is the I-FETCH instruction which al-

ways implies synchronization prior to use of the fetched value. Less obvious are the

HD, TL, and TUPLE-FETCH instructions which are (implicitly) I-FETCH instructions.

Such outputs of such instructions are called FITCH-like31 . See Section 3.2.2.

Handling of the DEF case is straightforward - all DEFs are explicitly translated into a

simpler form consisting of a set of HD and TL instructions to unpack the argument

chain, plus the body, enclosed by a FASTCALL-DEF. By this technique, the imbedded

FITCH-like instructions are made explicit, and the long-latency arcs are likewise

represented explicitly.

A similar approach can be taken for APPLY instructions. The remaining issue is the

handling of the "invisible" dynamic arcs which link the invoker and the invoked

codeblock across the FASTCALL-APPLY interface. With DEFs rewritten as

FASTCALL-DEFs, and APPLYs rewritten as FASTCALL-APPLYs, the synchronizing end of

the invoker-to-invoked arcs (arguments and trigger) are simply the output arcs of

the FASTCALL-DEF (Figure 4-11). Similarly, the synchronizing end of the invoked-to-

invoker arcs (results and termination signal) are the output arcs of the

FASTCALL-APPLY. It is necessary then to consider both FASTCALL-DEF and

FASTCALL-APPLY as FITCH-like.

An additional problem arises from the semantics of APPLY-like instructions. Upon

receipt of the results and the termination signal, these instructions are responsible

for deallocating the invoked context's resources. Because this is part of the instruc-

3 1Instructions which invoke a manager, e.g., MAKE-I-sRuCTuRE, are potentially long-latency depend-
ing upon their implementation which is not implicit in program graph semantics. One can conceive
that sucn instructions package up a manager request and ship it off in the same way that an I-FETCH
packs and ships its fetch request. In such cases, synchronization would be implied anywhere the
instruction's output was used. An equally viable implementation is that the manager will always be
resident on the same processor as the executing instruction. In this case, such system calls can be
viewed as inline macro expansion, in which case there is no busy waiting. Another perspective is that
such instructions consume multiple pipeline cycles, and consume all of the processor resource
(productively) in the process. This is the view taken here, therefore, such instructions are not classified
as Fmc-like.
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tion and because it depends on long-latency arcs, it violates the principle of im-
bedded arcs. For this reason, all instances of FASTCALL APPLY (including those
which were originally APPLY instructions) are rewritten into component parts which
initiate the invocation and separately deallocate it. Doing this introduces two new
instructions: FASTCALI-APPLY.INITIATE which initiates the procedure invocation,
and SYNCHRONIZINM GRETURN.CONTXr which frees the invoked context's resources.
Rewriting is discussed in detail in Section 4.3.2.

4.2.5 Summary

In summary, the decision has been made to base partitioning on the location of long-
latency arcs in the graph rather than to pursue otherwise unguided depth-first or
breadth-first partitioning strategies. To make any such scheme work, all long-
latency arcs must be directly visible at the graph level, and none may be "buried" in
the operational semantics of a graph instruction. By rewriting certain instructions
into simpler forms, this constraint can be met. It remains to describe an algorithm
which can use this information to safely partition these simplified graphs.

4.3 Code Generator

With an understanding of the new target model and the existing program graph
structure, it is possible to describe a method of generating code for the hybrid ar-
chitecture from programs originally written in Id [9]. This section presents the
details of the process. A number of interesting problems arise which are charac-
teristic of code generation for parallel machine languages. Solutions to these
problems are presented.

4.3.1 Overall Goal and Method

Compiling Id code to the target model is done with extensions to the Id Compiler,
Version II [571. Its modular organization and well defined inter-module interfaces
made addition of a new code generator possible with only minor effort. This section
discusses the design of the code generator for the target compilation model
presented in the previous chapter.

A goal of the code generator was to allow existing Id programs to be used as
benchmarks for the new architecture. One constraint was not to modify the com-
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Figure 4-8: Structure of the Id-to-Hybrid Compiler

piler itself, but rather to use selected modules, intact, to which are added new
modules. The overall architecture of the existing Id compiler is described in [571.
Each major phase of the compiler is a separate module with a well-defined
input/output interface (e.g., annotated parse tree, annotated dataflow program
graph, dataflow machine graph). The modifications consisted of a set of new code
generation phases, the first of which maintained the annotated dataflow program
graph interface. The resulting compiler (collection of phases) has the structure
shown in Figure 4-8. Boldface phase names represent those which were added to

the existing compiler.

Rather than simply discuss each new phase in turn, it is more illuminating to under-
stand the issues in compiling dataflow program graphs into PML for the given com-
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pilation model. In the following sections these issues are raised, and suitable solu-

tions are given. Where appropriate, references are made to the phases which ac-

tually perform the work.

4.3.2 Simplifications

Program graph instructions and encapsulators [57] define a rewrite language which

can be shown equivalent to Id. In the Id Compiler, program graphs are trans-

literated to machine graphs through a process of simultaneous macroinstruction ex-

pansion and context-free substitution of machine graph instructions for program

graph instructions. The program graph abstraction is useful in that it admits

powerful manipulations with relative ease where parse trees would be cumbersome

and machine graphs would be too microscopically detailed.

The code generator for the hybrid machine preserves the program graph interface.

Input to the code generator is a well-formed (acyclic compositions of the basic

schemata), well-connected (output arcs, called sinals, have been added from in-

structions which otherwise produce no output, e.g., I-STORE; and input arcs, called

triggers, have been added to instructions which otherwise receive no inputs, e.g.,

constants) graph.

Code generation begins with macroexpansion of certain program graph instructions

and encapsulators into lower-level program graph equivalents, resulting in a

simplified graph. Examples necessitated by instruction semantics for partitioning

have already been discussed. The primary purpose in performing further rewrites is

to simplify later stages of the code generator by restricting the input language, i.e.,

reducing the size of the set of possible graph instructions. It is particularly impor-

tant to perform this transformation prior to assigning frame slots - program graphs

do not have the property of a one-to-one correspondence between instruction outputs

and frame slots. Many required frame slots are "hidden" inside complex program

graph instructions. More troublesome, however, is the realization that the number

of such hidden slots is a function of the program graph instruction encoding. Hence,
this module transforms program graphs into a new kind of graph with a one-to-one

correspondence between outputs and slots.

M.,croexpansion is done by context free substitution of a subgraph for a single, com-
plex instruction. Some analysis is performed on instructions to build a proper sub-
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Figure 4-9: Rewriting MAKE.TUPLEA.4

graph. The expansion is recursively applied to the subgraphs until the resulting

graph contains only those instructions in the restricted set. In each case, the new

subgraph has the same number of inputs and outputs as the old instruction.

Structure Handling Instructions

Program graph instructions for creating strings, tuples, and CONSes are rewritten

into a simpler form which uses a parameterized MAKE-I-STRUCTURE instruction32

and, as needed, literal constant instructions to represent the I-structure kind and

the bounds. This rewriting takes advantage of the ability to imbed small literal con-
stants as arguments to any instruction. After this transformation, only one instruc-

tion is required to allocate I-structures of any kind. In Figure 4-9, a four-element

tuple creation instruction is rewritten into a MAKE-I-VECTOR instruction with an im-
plicit lower bound of zero. The upper bound of three is specified by a literal instruc-

32'he operation to allocate an area of the I-Structure storage space can be implemented with a single
opcode. However, because of the three-address format of the abstract machine and the desire to collect
more fine-grained statistics on storage allocation patterns, three opoodes are used. In this example,
MAKK-vIcroR is an instance of the generic I-Structure creation operation with an implicit lower bound
of zero.
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Figure 4-10: Rewriting TuPLE-FCH.2

tion. The kind of vector" is encoded as an integer.

In a similar fashion, instructions to read or write the elements from strings, tuples,

and CONSes are rewritten to a form using only I-FETCH and I-TORE, plus literal con-

stants as necessary. Figure 4-10 shows TUPLE-FETCH.2 rewritten as an I-FETCH and

a literal offset. In both this case and in the previous example, triggers for the literal

instructions were derived from inputs to the original program graph instruction.

Array creation instructions are expanded in a manner similar to that for the ?'TDA.

Specifically, one dimensional array creation instances are expanded into

MAKE-I-STRUCTURE instructions, while higher dimensioned array creations are ex-

panded into calls to library routines.

DEF

All DEF encapsulators (outermost encapsulator of any procedure codeblock) are

rewritten to parameterized FASTCALL-DEFs. DEF abstracts both the mechanism of

passing arguments between contexts and the mechanism of conditionally unpacking

S3For the MAKr-I.vCToR inamrueons, the pouibilities an tupk and string.
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Figure 4-11: Rewriting DEF (per [57])

argument chains sent from APPLYs. Rewriting separates these two abstractions.

The argument chain unpacking is explicitly represented by a set of HD and TL in-

structions which take apart the list of arguments. Conditional execution of these

unpacking instructions is a consequence of the method of triggering SQ's. The gist

of the method relies on

" Suspension of the argument chain continuation, which contains the first
HD and TL instructions. Both of these require the argument chain. If no
chain is sent, as in the DIRECT-APPLY case, these instructions will not
execute.

* Initiation of continuations for the remainder of the unpacking as part of
the argument chain continuation.

Figure 4-11 shows the complete transformation. The FASTCALLDEF is

parameterized with the number of non-trigger arguments (n) of the original DEF en-

capsulator.
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Figure 4-12: Rewriting APL pr[571)

APPLY, DIRET-APLY, and APPLY-UNATIsmI

APPLY instructions are rewritten into IF encapsulators which test the closure ar-
guments for readiness, i.e., that all arguments are present, and conditionally invoke
the procedure via FASTCALL-APPLY if ready (Figure 4-12). If the closure is not yet
ready, the existing argument chain is extended by one CONS cell, the head of which
contains the argument and the tail of which contains a pointer to the old argument
chain. A new closure containing a pointer to the new chalin is created, and the
counter of arguments remaining is decremented.

DIRECT-APPLY is rewritten, essentially, into the true-branch of an APPLY save that all
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APPLY-UNSATISFIED is rewritten into the fse branch of an APPLY.

FASTCALLAPPLY

All instances of ASTCALL-APPLY, including those created by rewriting APPLY and

DIRECT-APPLY, are rewritten into a form which exposes the imbedded dynamic arcs.

Essentially, this is consistent with the split-transaction nature of I-FETCH: one in-

struction initiates the fetch while others synchronize prior to using the result. In

the case of FASTCALL-APPLY, one instruction initiates the invocation, and a second
instruction (SYNCHRONIZING-RETURN-CONTEXT) synchronizes on the return signal

and then deallocates the invocation's resources. The translation is depicted in

Figure 4-13.

4.3.3 Partitioning Constraints

In this section, the notion of safely partitioning a dataflow graph is developed. It is

again assumed that the input graphs are well-formed and well-connected. Since

there is the potential of introducing deadlock as a result of partitioning a dataflow

graph, the majior goal of this section is to develop a set of partitioning constraints

which will demonstrably avoid the introduction of deadlock.
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Partitioning a graph into SQfs, wherein the instructions are totally ordered, may im-

ply the addition of arcs into the graph to effect sequentialization. The first section

defines the issues which arise from the introduction of additional arcs into an other-

wise acyclic graph. The second section presents the Method of Dependence Sets, a

simple algorithm for partitioning dataflow graphs, which only introduces arcs in a

highly restricted fashion. The third section examines the algorithm's behavior and

shows that, despite the introduction of arcs, deadlock-inducing cycles are not

created.

Adding Arcs

In order to guarantee liveness of the partitioned graph, it is essential no cycle be

introduced into the partitioned graph which cannot be resolved. Recall that the par-

titioned graph contains only SQ nodes, each representing some nonempty subset of

the nodes in the unpartitioned graph. Moreover, the instructions in each such sub-

set are totally ordered. This sequentialization can interact with existing depen-

dences in the graph, leading to a static cycle. Depending upon the interpretation
model for sequentialized SQ's, deadlock may result.

Definition 4-1: An unresolvable static cycle is a directed cycle of SQ's in a
partitioned dataflow graph for which no schedule of SQ executions can ter-

minate.

Given that instructions within an SQ are to be interpreted sequentially, it is clear

that arbitrary partitioning of an acyclic graph into SQ's can result in unresolvable

static cycles, a sufficient condition for deadlock. This is reasonably obvious - the
partial order represented by a dataflow graph captures all and only the necessary

inter-instruction dependences. Imposing further constraints, viz., sequential execu-

tion, on a graph is tantamount to adding additional dependence arcs. Doing so in a
haphazard fashion can clearly introduce a cycle where there was none.

An example of how partitioning can give rise to a static cycle was shown in Figure

4-4. In order to avoid deadlock, it is necessary either to prohibit such cycles or to

devise methods for resolving them. Sarkar and Hennessy [521 choose the former

tack and impose a convexity constraint on the partitioning - static cycles can there-

fore never arise. As an alternative to their technique, it is possible to use an SQ

inwerpretation model which allows such cycles to be resolved. One can imagine a
pLrtitioning in which the ability to resolve a cycle only means that the order of in-
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structions in an SQ must follow the topological ordering of the dataflow graph and
that there must be a notion of SQ suspension and resumption based on the absence
and presence, respectively, of data on inter-SQ arcs. One possible mechanism which
allows this behavior and which is efficient was addressed in Section 3.3.

Unfortunately, in order to avoid partitioning-induced deadlock, it is not sufficient to
simply resolve all static cycles. I-Structure storage has introduced the notion of
dynamic arcs between producer and consumer. Since these arcs are input-
dependent, they are not explicitly expressed in the graph and are therefore not
amenable to static analysis. They impose no less of a constraint, however. Consider
an unpartitioned graph, augmented with all potential arcs from producers to con-
sumers through I-Structure slots. This graph would form the basis for a kind of
static analysis; partitioning would be constrained by the ability to resolve any cycles

so introduced.

Definition 4-2: An unresolvable dynamic cycle is a directed cycle of SQ's
in a partitioned dataflow graph, augmented with the input-specific
dynamic arcs, for which no schedule of SQ executions can terminate.

The algorithm presented in the next section allows the partitioning of dataflow
graphs without the introduction of either static or dynamic cycles.

The Method of Dependence Sets

The Method of Dependence Sets (MDS) is a simple algorithm for safely partitioning
dataflow graphs. It seeks to avoid the problems of static and dynamic cycles by
uniquely naming each uITCR-like output, and then grouping together all and only
those instructions which depend directly or indirectly upon the same set of names.
The following definitions are in order:

Definition 4-3: The input dependence set for an instruction (written IDS(O)
in a well-connected graph is the union of the output dependence sets of all
instructions from which it receives input. The input dependence set of the
root instruction is 0. The input dependence set for instructions with no
inputs is likewise defined as 0.

Definition 4-4: The output dependence set for a given output of a given
instruction (written ODS(io)) is either the instruction's input dependence
set if the output is not rETCR-like, or the union of the instruction's input
dependence set with a singleton set made up of an identifier which
uniquely names the given output if it is.

Note that it is a FETCH-like instruction's output, and not the instruction itself, with
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Figure 4-14: Properly Partitioned Graph

which is associated a change of dependence set. One may view the output-associated

identifiers as unique colors.

Now, assume a well-connected dataflow graph Gf(VER), where

e V is the set of graph instructions.

* E: {(ij) I ije V and j depends directly on i (the set of static dependence
arcs)

e R e V and R is the root instruction.

Algorithm 4-5: METHOD OF DEPENDENCE SRTS(G)
For each output o o[2R, compute ODS(Ro). Traverse graph G from R per

topological ordering4, selecting an instruction ie V to expand. For each
such instruction,

" Calculate IDS(i.

" Assign the generated machine instructions, in order, to an SQ cor-
responding to IDS). SQ's are selected such that for any two graph
instructions ije V

IDS(i)=.IDS(fSQ(i)=SQ(V)

The SQ denoted by IDS(R)=O is called the distinguished SQ.

* For each output o of instruction i, calculate ODS(io).

"4Such an ordering is specified in Algorithm 4-11, p. 120.
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Per the characterization of dynamic arcs in the last Chapter, FETCH-like outputs

represent long-latency operations. Viewed another way, it is the virtual gate (c.f,

Figure 3-1) which must be pushed to the boundary of the unit of schedulability. This

is done by forcing all sink instructions fed by the gate into a new SQ. These sink

instructions execute only when the I-FETCH and I-STORE upon which they depend

have completed.

Applying the definitions to the graph in Figure 4-5 and using a, 0, and y for unique

names results in the following assignments of input dependence sets to instructions

(assume that vector A and the indices ij are derived from the root with dependence

set 0):

Instruction Dependence set

1.TORE(O) 0
I-FETCH(i) 0
I-FET H(j) 0
I.FETCH(1) 0
I-FETCH(2) 0

+1 (ax)
STORE(1) (a )

sTORE(2) i )

Since each distinct combination of dynamic arcs denotes a single SQ, dynamic

scheduling can change to match the dynamic dependences. The correctly partitioned

graph is shown in Figure 4-14. The determination of synchronization points is also

straightforward: each dependence (arc) which crosses SQ boundaries must be ex-

plicitly synchronized by the consumer, or sink, SQ. Consumers in the same SQ as

the instruction producing a value need not perform synchronization. It is implicit in

the static scheduling of instructions within the SQ (these are exactly the static

synchronized and static unsynchronized arcs of Section 3.2.2).

Properties of MDS

The Method of Dependence Sets collects together into SQ's all and only those in-

structions with identical dynamic dependence requirements. That is, every instruc-

tion in an SQ depends directly or indirectly on the same set of FZTCM-like outputs

and I-STOREs. Each resulting SQ is a set of subgraphs. Disjoint subgraphs in an SQ

have neither a static dependence nor a dynamic dependence between them. The
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former is obvious - otherwise, they would not be disjoint. The latter is less obvious,
but follows immediately from the definitions. A dynamic dependence would imply
FZTH-like instruction outputs feeding sink instructions, which would necessarily
have forced the sink instructions to appear in a different SQ.

This simple assertion has a powerful effect on the manner in which SQ instructions

can be sequentialized. For an SQ which contains but a single subgraph, the order-
ing must adhere to the subgraph's topological constraints. For an SQ with more
than one subgraph, the instructions from any one subgraph must be topologically
ordered, but there is no cross-subgraph constraint. Consequently, in an SQ contain-
ing subgraphs A and B, instructions from B may follow all the instructions of A, or
conversely. Alternatively, instructions from A and B may be interleaved. The point
is that, because there cannot be a dynamic dependence between them, introduction
of sequentializing arcs cannot interfere with essential dynamic instruction ordering.

Can cycles, either static or dynamic, ever arise among the SQ's partitioned by MDS?
The following two theorems address this question directly.

Theorem 4-6: Partitioning an acyclic dataflow graph by the Method of
Dependence Sets results in a graph which is free of static cycles.

In order to prove this, it is necessary first to establish a few other facts,
specifically, (1) that where there is a dependence between two SQs, there is
a proper subset relationship between their dependence sets and (2) that
transitivity of this relation holds.

Lemma 4-7: Inter-Instruction Dependence: For all instruc-
tions ije V, if (i)e E then IDS(U);IDS(i).

Proof Follows directly from Definition 4-3.

E0
Lemma 4-8: Cross-SQ Dependence: For all instructions ije V,
if (ij) e E and SQ(i) SQ(/) then IDS(j) IDS().

Proot (by contradiction)

From Lemma 4-7, IDS(j)JID(i). Assume that
IDS(l)=IDS(i). But from Algorithm 4-5, it then follows
that SQ(')=SQ(O.

0
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Lemma 4-9: Dependence Transitivity: For all instructions
ij.k,le V, if (iJ)EE, (kJ)r E, SQ(Q)=SQ(k), and SQ(i)*SQ(j)*SQ(I),
then IDS(t ) IDS( O.

Proofi

IDS(j)DIDS(i) [1] Lemma 4-8
IDS(I)n IDS(k) [21 Lemma 4-8
IDS(j)=IDS(k) [3] Algorithm 4-5
IDS(I)OIDS() [41 by 2 and 3
IDS(I)DIDS() [51 transitivity, 4 and 1r

aP The theorem can now be proved rather simply.

Prooft (by contradiction)

Consider a cycle of dependence arcs among a set of distinct SQs
AB.... Then, by Lemma 4-9 it follows immediately thatIDS(A) =)IDS(A).

Theorem 4-10: Partitioning an acyclic dataflow graph by the Method of
Dependence Sets results in a graph which is free of dynamic cycles.

Theorem 4-6 states that the result of partitioning of an acyclic graph by
MDS is itself acyclic. Augmenting this graph with all possible input-
specific dynamic arcs raises the possibility of cycles containing one or more
dynamic arcs. It follows from the definitions that a dynamic cycle cannot
occur within a single SQ (as discussed above). It remains to show that no
cross-SQ cycles exist.

Proof (by contradiction)

Assume a cycle among two or more SQ's wherein one or more of
the cycle-forming arcs is dynamic. Because a dynamic arc is in-
volved, there must be an I-STORE instruction i in the cycle.
Consider this I-STORE instruction and the SQ in which it resides.
By the assumption and Algorithm 4-5, this SQ must depend on
the dynamic arc. But, again by Algorithm 4-5, all instructions in
the SQ, including i, depend on the dynamic arc. This is true in-
dependent of any sequentializing arcs which may or may not be
added to the SQ. Here is a situation of a dependence which vio-
lates I-structure semantics. Hence, either there is an error in the
original program, or the assumed cycle cannot exist.

0
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Summary

In this section, a partitioning algorithm has been introduced which groups together
all and only those instructions with identical dynamic arc dependences. It has been
shown that the extra arcs introduced by the algorithm do not interfere with essen-

tial instruction orderings, that static cycles are not created, and that dynamic cycles

are not possible.

4.3.4 Operand Storage Allocation

This section examines the mapping of arcs in the graph into proper dynamic storage.

Such storage is invocation specific and, by analogy with von Neumann machines, a
frame, or array of directly indexed slots is the model.

The problems of allocating invocation-specific operand storage can be divided into
two categories: those which can be reduced to analogous ones in a von Neumann
environment and those which are unique to parallel processing. For the sake of
completeness, both are presented here. The latter category has received con-

siderably more attention in this study, however. To that end, a number of known

storage conservation techniques which apply to the former category were simply not
implemented in the prototype compiler. It was therefore deemed sufficient to al-
locate one slot in the frame for each instruction output in the graph35 with the fol-

lowing exceptions:

" Merged arcs, e.g., the outputs of the Then and Else blocks of an IF en-
capsulator, cause instruction outputs to be mapped to the same frame
slot.

" Loop variables are mapped statically to frame slots, but the slots are
re-used in a carefully controlled fashion across iterations. This impor-
tant optimization is described in Section 4.3.5.

3Frame slots are assumed to be inaccessible outside of the given execution context. Moreover, the
values held in frame slots have a lifetime which is generally much loss than the lifetime of the frame.
It is possible and highly desirable to fold the compiled codeblock such that slots can be re-used. This
problem is equivalent to register assignment for traditional architectures with the added constraint of
multiple continuations per codeblock. This introduces nondeterminism into the matter of deciding
when a slot will no longer be referenced; in the case that the producer of a value and all of its
consumers are not within the same SQ. dynamic methods (or loosely bounded static methods) are
necessary. In that the compilation scheme proposed here does not partition a codeblock into SQs until
after frame slot assignment, such folding is not possible.
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Figure 4-15: Procedure Frame

The Frame

Codeblocks are classified as procedure or inner loop as described in Chapter 4.1.

Their frames differ in the way arguments and constants are handled. The

remainder of the frame structure is identical.

Slots are reserved in both kinds of frames as follows: the first slot contains a frame

descriptor which points to the return area in the caller's own frame. This frame

descriptor, therefore, must denote a globally unique frame address. The second slot

contains the argument chain I-structure descriptor unless any of the following is

true, in which case the slot will be empty:

It is an inner loop codeblock, in which case arguments are sent directly
and no chain is used.
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Figure 4-1M Inner Loop Frame

" It is a procedure codeblock but the arity is zero or one, in which case a
chain is unnecessary.

" It is a procedure codeblock but is being invoked by DIRECt-APPLY, in
which case the arguments are sent directly as in the inner loop case.

The third slot is reserved for the invocation-time value of K, the bound on the degree

of loop unfolding. The major difference between procedure and inner loop codeblocks

shows up in the argument/constant area.

Procedure Codeblocks (Figure 4-15): A procedure codeblock may or may not in-

clude an outer LOOP, but in any event, it includes at most one. This LOOP may re-

quire a constant area to hold loop invariant values. Such constants are computed

after procedure invocation but prior to execution of the loop. Therefore, constants

are distinct from procedure arguments and are stored separately in the frame. Loop

con.stants are assigned ordinal indices in the graph, and these indices are mapped to

offsets in the constant area of the frame. Arguments are handled by mapping the

la zt to a fixed offset (3) in the frame, with the second-to-last occupying offset 4, and

so on. Arguments are thus mapped in reverse order, from last to first, in the frame.

The reason for this is slightly subtle.
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0: Teroination SIGNAL

1: First esult

Last Result

Figure 4-17: Procedure Call Subframe

The procedure linkage constraints imposed by the closure-based application scheme

dictate that the APPLY instruction which detects that the arity is satisfied will for-
ward the last argument (as supplied to the APPLY) and the argument chain descrip-
tor (part of the closure) to the invoked procedure. Since the arity of the called proce-

dure is not known, in general, at the time the caller is compiled, the means of send-

ing the last argument must be independent of arity. Hence, it is the last argument,
rather than the first, which appears at a fixed address in the frame. Note that this
limitation does not affect the implementation of DIRECT-APPLY since it is specifically

in this case that the called procedure's arity is known.

Inner Loop Codeblocks (Figure 4-16): An inner loop codeblock always includes a
LOOP encapsulator. The loop constants are handled differently than in the case of a
procedure codeblock. Here, the arguments to the codeblock include the loop con-

stants. Therefore, there is no explicit constant area separate from the argument

area, and the overhead of storing constants is subsumed by the passing of ar-

guments to the codeblock.

Following the arguments and constants, slots are used as necessary to store arc

values for the remainder of the codeblock. This area is largely unstructured, and

slots are individually allocated. The exception to this rule is the case of codeblock

invocation. Since procedure codeblocks in general return a result and a signal, and
inner loop codeblocks return multiple results and a signal, a decision must be made.

The caller can send multiple slot pointers to the called codeblock, one for each thing
to be returned, or the caller can reserve a contiguous block of slots and send only a

single pointer with the understanding of how multiple pointers should be derived
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0: ID

1: First LOOP Variable

Last LOOP Variable

First Scratch Slot

Last Scratch Slot

Figure 4-18: Iteration Subframe

from it. The latter scheme is by far more economical. Such contiguous blocks of

slots are procedure call subframes, and their format is depicted in Figure 4-17.

Up to this point, all slots have been allocated statically. Further, the use of such

slots will always adhere to the write-once, read-many discipline. Not surprisingly,

loops confuse this order. From experience with the MIT Tagged-Token Dataflow ar-

chitecture [10], the benefits of exploiting dynamic loop unfolding and inter-iteration

parallelism are clear [20]. The degree to which a loop can unfold (the number of

concurrent iterations plus 1 - K) is an invocation-time parameter. Iteration specific

resources are re-used modulo K. In the domain of dataflow machines, the com-
plexities of the necessary dynamic naming and dynamic storage management are

masked by the implicit tag manipulation rules and the Waiting-Matching hardware.

In the hybrid, names and slots are allocated and deallocated at invocation boun-

daries; consequently, management of loop unfolding introduces a dynamic character

to slot allocation.

The hybrid framework can indeed support the dynamic unfolding of loops and inter-

iteration parallelism. Each instance of an iteration requires access to the program

text, access to loop constants, and its own private working area in the frame. The

latter is provided through the use of the continuation-specific index registers through

which indirect access to iteration specific state is possible. Within the Predicate and

Body of the LOOP, slot numbers are assigned in a virtual frame, called an iteration

subframe (Figure 4-18). The 0th slot in each subframe is reserved for an Iteration
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Descriptor, whose function is discussed in section 4.3.5. The next n slots hold the n

loop variables, with the remainder of the frame for loop temporaries. It is assumed

that these subframes will be recycled modulo K, and the assumptions about write-

once slots break down. These issues are addressed in section 4.3.5.

Upon invocation of a LOOP-containing codeblock, the amount of frame space al-
located will be x+Ky slots to accommodate both the x non-LOOP slots as well as K

instances of the y slots necessary for the unfolded LOOP.

Assignment, Propagation, and Constraints

Frame Slot Mappings

Instruction Port Slot
or Name Mapping

Encapsulator
LITERAL Output none if immediate

assigned -shared otherwise

LOOPCONSTANT Output assigned - loop constant area

I-FETCH Output assigned -argument area if argument
assigned otherwise

IF IfOutput assigned
ThenInput propagated - IInput
ElseInput propagated - IfInput
ThenOutput constrained - IfOutput
ElseOutput constrained - IfOutput
IfInput none

LOOP LoopOutput assigned
PredicateInput assigned
BodyInput propagated - PredicateOutput
BodyOutput constrained - loop variable area
LoopInput constrained - loop variable area
PredicateOutput none

FASTCALL-DEF Argument assigned -argument area
Trigger assigned - frame descriptor

FASTCALL-APPLY.INITIATE Signal assigned - termination signal
Result assigned -result area

OTHER Output assigned

After rewriting, the only remaining encapsulators are IF, FASTCALLDEF, and LOOP.

Encapsulators have outputs on both the "exterior" surface and on surfaces which

enclose the basic blocks. Certain of these outputs are nontransparent, i.e., in the

final expansion of the encapsulator, instructions will be generated which themselves

produce the value associated with the output. Other outputs are transparent - the
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value associated with the output will have been created by an instruction other than
the encapsulator itself and will appear elsewhere as an input to the encapsulator. It
is possible to statically classify every output of every encapsulator as transparent or
nontransparent, and for transparent outputs to identify the input or inputs from
which the value will come.

Frame slots must be assigned to nontransparent outputs and propagated to trans-
parent ones. Assignment implies that an output is marked as the originator of a
value or set of values which will occupy a specified frame slot. In the event that arcs
are merged (as in the LOOP and IF encapsulators), there will be two distinct instruc-
tions whose output arcs are mapped to the same slot number. This presents no
problem of semantics for the same reason that MERGEs in the TIDA present no
problem - the one-in, one-out property is always preserved when the schema
(encapsulator) is viewed as a whole. In this case, the mapping to slot numbers is
called constrained. The table shows, for each type of instruction port, the kind of
frame slot mapping which applies.

Method

The method of mapping arcs to frame slot numbers in a codeblock is to traverse the
graph from the root, which is always a single FASTCALL-DEF, first assigning non-
transparent frame slot numbers to the root's outputs, then mapping body arcs to
frame slots. The former process is straightforward; for each argument output of the
FASTCAJL-DEF to which is connected a sink instruction, assign the corresponding
predefined frame slot number. If this FASTCALL-DEF was the result of having rewrit-
ten a DEF, there will be two argument outputs, the argument chain (slot 1) and the
last argument (slot 3). Otherwise, there will be n arguments, assigned to slots
beginning with slot 3. If the trigger output has a sink instruction, it is assigned slot
0 (the return frame descriptor).

The latter process of mapping arcs in a basic block to frame slots is slightly more
complex. First, for each instruction in the basic block, nontransparent frame slot
numbers are assigned. Then, for each encapsulator, transparent frame slot numbers
are propagated, constraints are applied, and mappings of arcs within the
encapsulator's basic blocks are done recursively.

In the case of literals, several optimizations are preformed. First, because certain
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literals are representable as immediate values, no frame slots need be assigned. A

majority of literals are covered by this case, e.g., small integers used to index conses

and tuples. Second, it is unnecessary to reserve more than one frame slot for the

same non-immediate literal value; instead, an association list is built during frame

slot assignment to record the hardware type and value of each non-immediate literal

and its assigned frame slot. Multiple literal instructions calling out the same value

will use the same frame slot. Such frame slots are initialized during the prelude of

the codeblock, and references to these slots need never cause suspension.

LOOPs present a special problem in addition to the issue of merged arcs discussed

above. Since slots associated with circulating loop variables will be re-written from

iteration to iteration, it must be the case that

* no rewriting of a slot is visible outside the LOOP (as would be the case of
instruction A feeding instruction B as well as a LOOP input). A similar
problem exists for non-immediate literals used as inputs.

* immediate literals used to initialize circulating variables are copied to
frame slots prior to LOOP entry (an immediate can't be re-written).

" no body input slot may be rewritten until the existing value is no longer
needed in the current iteration.

" LOOP outputs are not accessible until the LOOP terminates. Using frame
slots as the sole means of synchronization could potentially lead to the
interpretation of an intermediate result as the final LOOP output.

Non-LOOP codeblocks are acyclic and, as a result, each arc will denote at most one

value for each invocation. Consequently, the corresponding frame slots are written

at most once per invocation. LOOPs present the possibility of re-writing slots during

an invocation. As discussed previously, mapping of arcs within a LOOP is handled

specially. While all other codeblock arcs are mapped into a single frame namespace,

LOOP arcs are mapped to a separate namespace. When a codeblock is invoked, space

is allocated to hold a single copy of the non-LOOP slots, and additional space is al-
located to hold K copies of the LOOP slots with the intent of allowing K-I consecutive

iteration bodies to run concurrently.

Keeping changes local to the LOOP is easily handled by simple analysis of each LOOP

input - if it is not the sole sink, an IDENTITY instruction is inserted between the

source and the LOOP input36 .

3Note that it is not enough that the Loop encapsulator is the only sink for each source - it is possible
that a single source feeds two distinct LooP inputs. Unless these are explicitly separated by an
IDENTITY instruction, the two LOOP variables will be aliases.
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Summary

This section has reviewed the problem of allocating dynamic storage for an invoca-

tion as an extension to von Neumann methods. It has been shown that in order to

exploit parallelism, e.g., across iterations, it is necessary to allocate significantly

more storage than would be necessary in a sequential von Neumann paradigm.

Another manifestation, although not explored here, is the difficulty (and additional

storage space) of folding the graph to permit re-use of slots during execution in the

manner of traditional register allocation techniques. The difficulty, again, arises out

of the multi-threaded (parallel) nature of the model.

4.3.5 Machine Code Generation and Partitioning

After the graph is re-written into a simpler form and frame slots have been as-

signed, machine code can be generated. This process is done by simultaneously

translating graph instructions into machine instructions and partitioning the

generated instructions into SQ's. Both activities involve correctly reflecting the data

dependences in the final codeblock module. As shall become clear, the process is

distinctly different than that in the TIDA. Static dependences constrain code order

within SQ's; dynamic dependences constrain the partitioning of code into SQ's and

the choice of synchronization points.

Representation of Scheduling Quanta

As the graph is translated, it is partitioned according to the constraints in Section

4.3.3. The internal representation of a scheduling quantum is shown in Figure 4-19.

This abstraction is responsible for being the repository of translated instructions in

the SQ. More importantly, this abstraction is used to enforce the constraints im-

posed by the architecture regarding register usage (fixed number, values not

preserved across suspensions). The abstraction also summarizes the inputs to the

SQ (these will always be frame slots - immediate literals are uninteresting, and

registers can never be SQ inputs) and the termination signal slots.

Within the compiler, virtually all register references are symbolic. Allocation and

deallocation of register numbers is automatic. The mapping of register names to

register numbers is handled by the SQ abstraction, and invalidation of names across

potentially suspensive instructions is enforced.

118



MZCHANISM FOR TRANSLATING A GRAPH INSTRUCTION § 4.3.5

Scheduling-Quant (0

b Input Op.
Label SW. Opcode +

Instruction* Array Input-Oporands

Valid-Registers -0: NIL Output-Operand

Register-Bindings T:

Input-Slots 2:

Termination-Slots Operand

Mark Addreaing-Mode :A=,it ___ ., .. value (:BMS.)

Addreing-Mode :LITERAL

( SLOT-SPEC aSLOT-SPEC ... value (:INT.17)

(SLOT-SPEC SLOT-SPEC "" [Addresing-Mode : REG

Value9

Figure 4-19: Representation of a Scheduling Quantum

Mechanism for Translating a Graph Instruction

Translation proceeds in a straightforward manner. The algorithm is divided into a

driver, which understands graph structure but nothing of the semantics of the in-

structions to be translated, and a set of expanders, one for each graph instruction.

Expanders know nothing of graph structure and simply specify the translation of a

graph instruction to machine code as a function of the graph instruction's properties,

e.g., number of inputs and outputs, instruction parameters, and opcode. The

specification of an expander is mechanically transformed (via a LISP macro) into a

function which performs the translation and then recursively calls the driver on the

instruction's outputs. The driver selects graph instructions for expansion when and

only when all of the instruction's inputs have been expanded. This simple technique

produces code within SQ's which is sequentialized according to the topological order-

ing of the original program graph.
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The Driver

The driver is expressed as a few very simple functions which traverse the graph.

The Expand function invokes the appropriate expander for each graph instruction;

the expander in turn invokes ExpandOutputs as appropriate. This process treats

encapsulators as instructions.

Algorithm 4-11:WERATE(Graph)

" For each Instruction in Graph, mark it with an EnablingCount
equal to the number of arcs incident on its Exterior surface.

* Invoke EXPAND on the Root Instruction.

Algorithm 4-12: EXPAND(Instruction)
Unless Instruction is marked,

e Mark it

e Invoke its Expander

Algorithm 4-13: EXPANDOUPUTS(nstruction)

" For each Output on all surfaces of Instruction,
Invoke EXPANDSINK on Instruction and Output

* If Instruction is an encapsulator, note the subordinate SQ descrip-
tors created in expanding the instructions connected to the non-
exterior outputs.

Algorithm 4-14: EXPANDSINK(Sourcelnstruction, SourceOutput)
For each SinkInstruction connected to SourceOutput of
SourceInstruction,

When the arc to SinkInstruction is incident on its Exterior sur-
face,

o Decrement its EnablingCount.

e When the resulting EnablingCount is zero, mark the arc
and invoke EXPAND on SinkInstruction.

The Expanders

The following operations are common to the expansion of each type of graph instruc-

tion. They are added automatically to the specification of the semantics of each

graph instruction, thereby hiding details of the representation of SQ's and the

vagaries of the synchronization mechanisms of the model.

*Selection of an SQ: Partitioning by MDS (Algorithm 4-5) requires, for
each graph instruction, the computation of its input dependence set
which uniquely defines the SQ to which the expanded instructions
belong. At compile time, an association is maintained between depen-
dence sets and SQ's. New quanta are allocated each time a computed
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[I] Binary Op. Abstract Translation: SQ.4
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Figure 4-20: Abstract vs. Concrete Translation

dependence set fails to map to an existing quantum. SQ's are static ob-
jects which must be explicitly triggered at runtime; therefore, the crea-
tion of a new quantum implies the need to install a trigger in an existing
SQ.

*Computation of addressing modes: In translating a graph instruc-
tion, reference is made to the input operands in the abstract - each input
is an arc which logically denotes a value held in some physical resource,
e.g., in the frame, in a register, or in the instruction itself as in the case
of an immediate literal. Each arc and the instruction which feeds it
uniquely define the hardware resource represented. The operand ad-
dressing information can therefore be computed by simple analysis of
the instructions which feed the one in question. See Figure 4-20.

The compiler records a history of registers as output operands. Because
the driver traverses the graph according to topological ordering, it is
possible to flag invalid references to registers at compile time.

* Addition of Synchronization: By MDS it is known where
synchronization will be required - for any input to any graph instruction,
synchronization is necessary at operand fetch time if the input comes
from another SQ, directly (a static arc) or indirectly (a dynamic arc).
The compile-time representation of SQ's makes this determination
straightforward.

* Test for Suspensiveness: Once synchronization tests have been ap-
plied, it is known (again, at compile time) if an instruction cannot
suspend. When an instruction can be proved non-suspensive, no updat-
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ing of the register allocation information in its SQ is necessary. If,
however, this cannot be proved, the instruction's SQ abstraction is up-
dated to show that no subsequent instruction may make reference to a
value previously stored in any register.

Machine Code Generation

This section examines the (nearly) context-free expansion of graph instructions into

machine instructions, with no concern for the issues of partitioning, operand ad-

dressing / register allocation, synchronization, and so on as discussed above. The

expansion is, however, a function of opcode, number of inputs and outputs, and other

local, instance specific information.

Signals and Triggers

Signals and triggers were introduced into dataflow program graphs to make them

well-connected, i.e., to guarantee that each instruction which should fire does fire

(triggering), and that it is possible to determine when every instruction in a block

which should fire has fired (signalling). Triggering and signalling are implicit under

the von Neumann instruction execution model because there is only one locus of con-

trol. In a dataflow machine, however, it is much less straightforward. Certain in-

structions which themselves require no input, e.g., constant generators, must be ex-

plicitly initiated, hence the need for triggers. Other instructions which produce no

output but are only executed for effect, e.g., I-STORE, must be explicitly tested for

completion, hence the need for signals.

How do signals and triggers apply to the hybrid instruction execution model? Not

surprisingly, the von Neumann style of implicit signalling and triggering applies

within an SQ, but the dataflow model of explicit signals and triggers must be en-

forced between SQ's. It would not do, for instance, to construct an SQ which receives

only constant inputs and not to provide a means to initiate this SQ. Similarly, it

would be necessary to provide some mechanism to detect termination of an SQ

which produces no arc-carried results.

A simple technique would be to explicitly represent signal and trigger arcs in the

compiled hybrid program. This, of course, is unnecessary and misses the oppor-

tunity for some good optimizations. Assume that the graph is well connected. In

what situations are signals and triggers essential?
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Triggers: Literal constant instructions are the prime motivator for triggers. But as

described previously, constants are handled by first eliminating all those which can
be represented as immediate values, and second by loading frame slots during the
codeblock's prelude with all other literals. Moreover, the method of dependence sets
will never create an SQ which has only literal inputs. This follows by definition - an
SQ depends directly on some set of dynamic arcs. It can be argued, therefore, that
explicit representation of trigger arcs across SQ boundaries because of the need to
trigger literal constants is unnecessary.

r Note, however, that the mechanism of synchronization relies on an eager reading of
a frame slot, possibly resulting in suspension of the SQ which attempted the read.
Hence, it is necessary to initiate, or trigger, every SQ which will ultimately be ex-
pected to compute. This does not mean that all SQ's within a codeblock should be
triggered at codeblock initiation. Rather, it means that SQ's should be triggered
when and only when the graph implies a triggering of any instruction in the SQ.

Such triggering is most conveniently done when a new SQ is formed by virtue of a

dynamic arc. That is, the compilation of an instruction such as I-FETCH will include
both the code to perform the fetch and the (implicit) code to trigger the SQ which
was generated to receive the result 37,38 .

1 TBT2 DummyInput.OInput.1
IputO... * TST2 DummyInput.2,Input.3

SIGNAL-TREET / ...OuiptgTST1 Output,.Input.n-1

Figure 4-21: A SIGNAL-TEE Instruction and its Translation

Signals: Signals are synthetic outputs generated by instructions which would other-

37The exception to this rule occurs in the SQ which reads the argument chain slot. There, the trigger
is installed in the distinguished SQ. This allows the codeblock to be properly triggered irrespective of
the way it was invoked (APPLY or DIRECT-APPLY).

3SA pathological case arises, using this method, whereby SQ's may be created which are completely

empty or which contain nothing other than triggers for other SQ's. This case is handled by the SQ
structural optimizer, discussed in a later section.
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wise have none, e.g., I-STORE. In the dataflow paradigm where each instruction is its

own scheduling quantum, the primary evidence of an instruction having fired and,

hence, the proof that a codeblock has terminated is the production of an output

value. Signals are therefore necessary for proving that instructions like I-STORE

have fired. Signals are collected by SIGNAL-TREE instructions, and summary signal

information is preserved and propagated from the innermost levels of a codeblock all

the way to the signal input of the FASTCALL-DEF.

In the hybrid paradigm, signal generating instructions may be compiled within

scheduling quanta along with other instructions. For that reason, adding signal out-

puts to I-STORE instructions in order to detect firing is not strictly necessary. The

requirement is more appropriately to be able to detect SQ termination and to be able

to deduce firing. Moreover, explicit representation of signal arcs as synchronizable

frame slots is only necessary between SQ's. Intra-SQ signalling can be implicit in

instruction order.

SIGNAL-TREE instructions, therefore, need not be compiled as a tree of instructions

which serve to test each individual signal. It is sufficient to generate code which

merely tests for termination of all the SQ's whose instructions are connected to the

- -- . . - IGNAL-TREE. This can be done by arranging the storing of a value into some frame

slot as the last activity of an SQ and then testing that slot. In many cases, this is an

easily satisfied constraint on code order in the SQ which requires no additional in-

structions and no additional slots. In the rare case that this is not possible, e.g., in

an SQ which must end with an instruction which does not unconditionally write to a

known slot, an extra instruction and slot can be used as a dummy signal. In any

case, there is no need to test signals which originate in the same SQ as the

SIGNAL-TREE itself. The compiled signal tree tests each such slot in turn, suspending

execution until the signal is written.

If codeblock termination detection were the only need for signals (it is not), signal

arcs and SIGNAL-TREEs could be eliminated entirely, and a simple reference counting

scheme could be implemented to detect termination of all codeblock continuations.

If the other uses for signals could be handled in a different way, this reference count-

ing optimization could save instructions and frame slots. This is a matter for ad-

ditional study.
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UNARY and BINARY Instructions

hsPuto IMnrIi

Opeode <Dinary~p> Output, Input. . Input. I

Figure 4.-22: A BINARY Instruction and its Translation

Unary and binary instructions (arithmetic, logicals, relationals) expand by a simple

rule: generate a machine instruction with the same opcode as the graph instruction,

mapping input arcs to input frame slots, registers, or literals, and the output arc to

the output frame slot or register (Figure 4-22).

I-FzTCH and I-STORz

Ind" Vae EISA Address.,tzucture, Index

I-STORE
STOR Signal,Address.Value

Figure 4-23: An I-STORE Instruction and its Translation

Recall that during program graph rewriting, all references to arrays, strings, tuples,

and CONSes were simplified to I-FETCH and I-STORE. The translations of these to

machine graph instructions are similar but not symmetric. The reason is, quite

simply, that an indexed I-FETCH fits neatly into a three-address format while an in-

dexed I-STORE does not. Hence, I-FETCHes are translated to single LOD instructions,

while I-STOREs are translated into a two-instruction suite: Index Structure Address
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(lisA) followed by STR (Figure 4-23)39.

IF

II: 31 Ped CateI.S
< Expanion of THEN block >

Te END-IF:

ELSE: < Expansion of ELSE Block >
END-IF: ...

7%MOUI, OL ... ,n-4 brO wpvt... - 1
JOUEL.O ... ne-I

Figure 4-24: An IF Encapsulator and its Translation

The IF encapsulator represents both an opportunity and an obstacle. The ad-

vantages of having the entire IF and its enclosed instructions within a single SQ are
significant, c.f , myriad SWITCH instructions in the TTDA. The biggest obstacle is

in the firing semantics of the IF. As defined by the rewrite rules, IF is necessarily
nonstrict. This is perfectly clear when IF is expanded to its lowest level form
(SWITCHes and MERGEs).

In order to reap the benefits of IF as an aggregate, it must be interpreted as a strict

operation. Traub has demonstrated plausible, if contorted, instances of IF which are

inherently non-sequential, ie., the order of instruction execution both inside and

outside the IF depends on program input. Such non-sequential instances of IF can
potentially be recognized by cycles through the IF in the graph. For the sake of the
present work, it was decided to compile IFs as if they were strict and to explicitly
rewrite non-sequential IFs into their lower-level, i.e., SWITCH based, representations.

3In general, such multi-instruction suites benefit by having intermediate results stored in registers
instead of frame slots. However, it is not always possible to do so when the suite may suspend at some
pmnt after the first instruction. This concern can be resolved at compile time by using registers for
intermediates when the compiler can prove that such suspensions will not occur and frame slots
otherwise. In the example, a register can be used for Address if and only if the access to Value is
provably nonauspensive.
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Strict IM are easily translated. The predicate is evaluated and a conditional branch
around the recursively expanded THEN basic block is taken. At the end of the

THEN code, an unconditional branch is inserted to redirect the flow of control to the

end of the ELSE block. See Figure 4-24.

LOOP

Several assumptions are made in defining the expansion of LOOP encapsulators. As

in the case of IF, the encapsulator is assumed to be strict in all of its arguments.
Further, as in the TI'DA, each codeblock is assumed to contain at most one LOOP.

LOOP instances are restricted to execute on a single processor, unlike the TTDA
which permits mapping of iterations across multiple processors. However, on that

processor, K successive iterations may be active concurrently. In the event that

there is inter-iteration parallelism in the program, this provides an additional

source of work for hiding long-latency operations. In the frequent case of nested

loops, K-unfolding of the the outer loop will allow K initiations of the next-innermore
loop which are candidates for initiation on up to K processors, and so on. The ar-

gument also holds for loops which contain procedure invocations in either their

predicate or body40.

Figure 4-25 gives the overall structure of LOOP translation. The wide arrows

represent control flow within the LOOP SQ while thin arrows denote data depen-

dences. LOOPs are translated as a sequence of instructions within a single SQ. This

instruction sequence may fork subordinate SQ's within the predicate and body per

MDS, but the computation of such SQ's is constrained to complete prior to termina-

tion of a given iteration.

Loop constants are stored in the frame's constant area. For an inner
loop, putting constants into the constant area is a side-effect of the
codeblock invocation - the constant area is part of the argument area
(see Section 4.3.4). For an outer loop, however, the arc-carried constants
must be explicitly stored in the constant area. In both cases, references
to constants can be nonsuspensive because no predicate or body instruc-
tions may execute until storage of constants is complete.

4°Experience with the TTDA has demonstrated the importance of unravelling in exploiting the
parallelism inherent in a program. On the hybrid model, this argument is equally true. While a
number of different translations are possible, the chosen one demonstrates the hybrid model's ability to
permit parallel execution of successive iterations in a general way. While the technique does not map
iterations across processors, the fact that each instance of an inner loop represents a separate invoca-
tion (potentially on a different processor) still permits a substantial multiplicative effect on available
parallelism. Other compilation techniques can be used to support loop spreading without changes to
the model. These are not investigated here but rather are identified as an opportunity for future work.
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* rE=ATION-DESCRIPTORs are initialized for each of the K iteration
areas in the frame. An iteration area is a block of linearly addressed
frame slots as described in Section 4.3.4. The first slot of each area
holds the iteration descriptor (ID) for that area (Section 3.2.4). The pro-
cedure is described below.

* The first iteration is started (described below).

e The predicate is evaluated.

* A conditional branch is taken to the loop epilog code if the predicate is
iax sz, otherwise,

* The next iteration is triggered.

* The body is evaluated.

* A barrier synchronization is performed on the termination of all sub-
ordinate SQ's in the predicate and body, if there are any. Note that the
initiation of the next iteration is independent of this barrier.

* Synchronizing slots are reset so that the iteration area can be reused.

* Termination of the iteration is signalled.

An iteration consists of the evaluation of the predicate and the subsequent evalua-

tion of either the body or the loop epilog. Starting a given iteration requires the

coincidence of three separate events:

1. Control Flow: The previous iteration has computed a TRX predicate
(call this CNTLi), and

2. Recycling. The i-Kth iteration has terminated, thereby making the i
mod Kht iteration area available for re-use (call this RECYC,.K), and

3. Importation: The i.K+1t iteration has indicated that its loop vari-
ables have been consumed, thereby permitting the slots in which they
reside to be re-written (call this BMPTi.k+,).

This is depicted in Figure 4-26. It is straightforward to show that, of these con-

ditions, the second is a necessary consequence of the first and third.
Theorem 4-15: For any iteration i, the necessary and sufficient conditions
for starting iteration i (INVOKE i) are CNTLi. 1 and IMPTi.K+I, or simply

V i, INVOKE i 4* CNTLi. 1 A IMPTiK+1  [1]

Given: The invocation condition as stated above,

V i, INVOKEi 4"* CNTLi. 1 A IMPTi.K+l A RECYCik [21

Asmie: The recycling and importation conditions are logically separate.
However, in general, freeing the loop variable slots prior to iteration ter-
mination implies explicit copying of the variables out of these slots. It is

129



14.5 COIVELING FOR THN HhBID ARCrEM URR

Am Am Aim Am

J' I
Iteration K ..2K-1: i- [11A 1111
Iteration 0 ... K-i: 0 0 ]

Figure 4-26: Constraints on Recycling of Iteration Areas

assumed that there is little, if any, benefit in doing this and that it is

reasonable to assume that both conditions are equivalent, i.e.,

V i, RECYCi , IMPTj [31

Moreover, since predicate evaluation for a given iteration implies that the
iteration must have been invoked,

V i, CNT6 * JNVOKM, [4]

Proof Idea At the point of invocation INVOKE/, the condition RECYC.K can
be deduced. In the proof below, the universal quantifiers have been
dropped but are implicit.

Proo (4-)
caCK1. lWTi.K+l antecedentCNT. A DMPTi.1+j =* INVOU&.1 A W i.K+ by [4]

INVOKEi. 1 A Ti.K+l PA (-P VQ)
INVOKEi. 1 'C CNTL-.2 A UTi.k A RECYCi.1J by [2]
CNTL,. A iPTi.K A RECYCi., I A IMPTi.K+l substitutivity
Wri-k selection

RECYCi.& by [31
CNT h. A IMPTi.K+l A RNCYCi.k  A antecedent
INVOKE by (21

10



Loop § 4.3.5

Proof (=)
INVOKE/ antecedent
CNTLi.1 A IMPrj..+I A RECYCs.k by [2]

CNTLi A IMri.K+l selection

0

It is now easy to understand the function of the STPC and STIM machine ops. STPC
(SeT Program Counter) signals the CNTL, condition, meaning that the predicate has
evaluated to TRUX in iteration i. It is represented as a boolean flag in the iteration
descriptor for iteration area i+1 mod K. The STrM (SeT IMport flag) op signals
IMPTi, meaning that iteration i has ended and that no further access to the loop vari-
ables for that iteration will be made. It is represented as a boolean flag in the

descriptor for iteration i-1 mod K.

Termination of an iteration implies that all BodyOutput.n inputs to the LOOP have
produced results and that subordinate SQ's triggered in the process have ter-
minated. The former condition is subsumed by the latter and that all predicate
and/or body instructions in the LOOP's SQ have executed (a simple assertion to make
based on the program counter). Thus, the only problem is to detect SQ termination.
For this, an iteration area slot is allocated per subordinate SQ (there may be none),
and each subordinate is amended to store into this slot upon termination. In the
LOOP's SQ, then, it is only necessary to probe (suspensively) these slots with TSTS

ops as appropriate.

Prior to issuing the STE, signalling the end of the iteration, all slots in the iteration

area which are used for explicit synchronization (Le., those which will be read
suspensively) must be reset 41 . The iteration area slots which must be reset are ex-

actly the following:

" The loop variables. These synchronize production of values in iteration i
and consumption in iteration i+1.

" Inputs to subordinate SQ's. These synchronize the action of threads of
computation which go on in parallel with the LOOP SQ.

411n models such as Monsoon [471, slots are self-cleaning in that they are associated with instructions
in a graph which self-clean at the abstract interpreter level. Slots in the hybrid model are instead
associated with instruction outputs with unrestricted fanout, the readers of which may be in different
SQ's. In general, then, no reader of any slot may be labeled a priori as the last reader, because the
readers are at best partially ordered. In the body of a codeblock (outside of any LoOP), slots are written
at most once, and cleanup is implicit in the process of frame allocation and deallocation. It is only
within a Loop that the issue of slot-resetting arises.
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BodyOutput.n inputs to the LOOP which are dynamic arcs.

An interesting optimization results if loop variables are constrained in their fanout

such that

. within the body of the current iteration they have no sinks (e., a
nextified variable used on the right hand side in a loop body).

* within the predicate of the next iteration they have but a single sink, or,
within the predicate they have no sink but within the body they have
but a single sink.

Under these conditions, it is possible to use the nonsticky addressing mode on the

single predicate sink or the single body sink, as appropriate, to obviate the need for

explicitly resetting the slot. A tradeoff exists in that loop variables which do not

satisfy the constraints can be transformed into ones that do, but the cost of doing so

(essentially introducing umOV instructions as identities so as to guarantee unity

fanout) in some cases outweighs the benefit of eliminating explicit UST~s.

For other slots requiring reset, unity fanout implies that the resetting can always be

done by the reader. Further, non-unity fanout within a single SQ can be similarly

optimized by making the last reader perform the nonsticky reference.

FA5TCALL-DNP

FASTCALL-DEF A,w0AO ... *-1 4wg < Lpansion of Body block >
MOVE CallerBubFrm.1, Result.0
MOVE Caller~ublrau. 2. Result. 1

Body

MOVR CallergubFraae. n. Result. n-l

Junto ... owl MOVE CallerSublraan .0, Signal

Figure 4-27: A FASTCALILDEF Encapsulator and its Translation

FASTCALI-DEF implements the invoked half of basic procedure linkage42. It is

responsible for triggering the enclosed codeblock, returring the codeblock results to

the invoker, and finally sending a termination signal. This is implemented in a

42PAol] that Dzr argument chain unpacking is, at this point, handled by graph instructions which

are seperate from the ASDCALL.DF.
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straightforward fashion by expanding the body of the FASTCALL-DEF and then

generating suspensive Move Remote (MOV) instructions for each result. The proce-

dure linkage protocol mandates the return of a signal - if the codeblock generates

one, it is returned to the invoker via a suspensive ueOVR. If no signal is generated, a
dummy signal is sent after the results have been sent. See Figure 4-27.

FABTCALL-APPLY-INITIATR

GETC InvokedContext.*Codeblock
IXCC ResponseFrane.O

odeIloeh Av LO ... Il [ MOVR InvokedContext.0,ItesponseFrae

FASTCALL-APPLY-INITIATE MOVR InvokedContext. ArgO, Argument .0
RuuM.O ... M1- ImmhuJdCoted Sigmt

MOVR InvokedContext. Argn-1 , Argument. n-i

Figure 4-28: A FASTCALL-APPLY-INITIATE Instruction and its Translation

FASTCALL-APPLY-INITIATE implements the invoker part of basic procedure linkage43 .

It is responsible for allocating a fresh context and sending the arguments to the new

frame.

The frame descriptor (FD) for Codeblock is allocated and stored in the

InvokedContext frame slot. A procedure call subframe for the returned signal and

the result(s) has already been allocated during frame slot assignment, starting at

the signal slot (see section 4.3.4). This slot number is added to the current context

(frame descriptor), yielding a new frame descriptor which points to the procedure

call subframe. This descriptor (stored in a register) is forwarded to the 0 th slot of
the invoked frame (per section 4.3.4) by a WVR instruction. The arguments are

likewise forwarded to the appropriate argument slots by NOVR instructions. See
Figure 4-28.

43Recall that APPLY and DmECr-APPLY have been re-written by this point into instances of
FASTCALL.APPLY, which subsequently get rewritten into instances of FATCALL-APPLY-INITIATE and one
other instruction which disposes of the called context.
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Summary

This section has presented the issues which surround the translation of macro-

expanded graphs into partitioned machine code, and a set of methods for handling

them. Significant among the issues are the dichotomy of synchronization methods,

implicit and explicit, and the optimizations which are made possible thereby.

It is clear that this dichotomy, if it is to be used to advantage, makes the task of code

generation significantly harder than in the TTDA case and, arguably, than in the

von Neumann case. This is because both paradigms (read: both sets of problems)

are present in the hybrid model.

The techniques developed in this study demonstrate the benefit of keeping the

issues of partitioning and operand addressing separate from the semantics of code

generation. Here, both partitioning and operand addressing are done algorith-

mically, and the specification of these algorithms is completely independent of the

specification of graph instruction translations. At a pragmatic level, this made ex-

perimentation with the instruction set possible. At a higher level, it demonstrates

that the complexity of the hybrid model is entirely manageable within a traditional

compiler mind set.

4.3.6 Optimizer

Two types of SQ structural optimization are performed on the codeblock after all

instructions have been translated.

Optimization 1: Null SQ Elimination

The first of these optimizations strips out degenerate SQ's which are a consequence

of the implementation of MDS. Because abstract translation is specified separately

from the mechanism of allocating and installing triggers for SQ's, it occasionally the

case that an SQ shell is eagerly created into which no machine instructions are ac-

tually generated. Here, a distinction is made between instructions which trigger

SQ's and all others. The latter instructions are called live instructions. A null SQ is

defined as one with no live instructions. For each null SQ, the SQ and its trigger

(which appears in some other SQ) can be removed. This will remove both the truly

erpty SQ's and those which merely contain triggers for other SQ's. In the latter

case, the triggers are moved backwards toward the distinguished SQ until a non-
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null SQ is found44 . Suppose, for example, non-null SQ A triggers SQ B. B contains

no instructions - only a trigger to C. Therefore, B can be eliminated, as can be the

trigger for B which appears in A. In its place, the trigger for C is installed.

Optimization 2: Tail Call Elimination

For all the cases where SQ A ends with a trigger to SQ B, a new SQ is formed by

appending B to the end of A. It is easily shown that neither of these transformations

corrupt the assertions previously made about the introduction of cycles as a function

of the partitioning.

4.3.7 Assembler

The final phase in the compilation is the Assembler, which translates the par-

titioned machine instructions into a format suitable for the emulator. At this stage,

the set of partitioned machine instructions is represented as a set of instruction

lists, one per SQ. The distinguished SQ is so marked. The output file format con-

sists of some codeblock property information (e.g., number of base and iteration

frame slots to be allocated upon invocation) followed by the contents of the SQs,

distinguished first 45

As SQ's are written, triggers are transformed into Continue (CNT) instructions.

CETE, when executed, causes a new continuation to be formed and executed. By

definition, all non-constant arcs which are input to an SQ imply synchronization.

Therefore, the most common situation is that the first instruction of the SQ, when

executed, makes a suspensive reference to one or more frame slots. Consider the

reference to the very first slot. If it is full, instruction execution proceeds normally.

If it is empty, the newly-created continuation will immediately suspend.

An important optimization of this relies on the fact that the CNT instruction which

creates the continuation itself references no frame slots. A variant on this instruc-

tion, Continue and Test (CmTT), can test exactly one frame slot for the presence or

absence of a value. CTT creates a continuation, and tests this slot. When a value is

"4This proess is guaranteed to succeed because all triggers are traceable to the distinguished SQ,
and the distinguished SQ is always non-null.

4Output files are encoded in CIOBL, a system-independent format which is described in [581.
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present, the continuation is scheduled for execution just as in the case of CENT. If no
value is present, the continuation is immediately put into the suspended state,
potentially saving an explicit suspension. For each trigger, the assembler is respon-
sible for determining which frame slot the denoted SQ will test first and for
manufacturing an appropriate CNTT instruction.

4.4 Summary

In this Chapter, the structure, instructions and manipulated data types of the
dataflow program graph have been reviewed. Dataflow program graphs are made
up of both simple instructions and encapsulators, the latter capturing notions of
iteration, conditional execution, and procedure linkage.

Also in this Chapter, the method of generating code under the new parallel machine
language model has been presented in detail. Key problems in performing the trans-
lation include keeping the abstract translation of instructions separate from the
issues of partitioning. The partitioning method and its properties have been for-

mally presented.
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Chapter Five

Analysis

This chapter presents experimental results from the first set of simulation studies of
the hybrid architecture along with a comparison to similar results from studies of
the TTDA. Section 5.1 considers the tradeoff between the dataflow regime and the
von Neumann regime given the notion of explicit synchronization cost as motivated
by the hybrid architecture. Section 5.2 considers the behavior of a collection of
benchmark programs as compiled for the hybrid architecture and as executed by the
idealized machine 46 . The results reflect the characteristics of the programs subject
to the hybrid partitioning constraints. A comparison is made to the TTDA which
shows how the hybrid's less powerful instructions can be used in place of TTDA in-
structions with little change in dynamic instruction counts. Also in this section, the
costs and benefits of dynamic loop unfolding are studied. Section 5.3 examines the
behavior of the realistic model using these same benchmark programs. The costs of
aborted instructions (due to synchronization tests which fail) and multi-ported ac-
cess to the local memory are considered. Data cache effectiveness is studied.

5.1 Making Synchronization Costly

Figure 5-1: Sequence, Fork, and Join

A prime thrust of the hybrid architecture, as viewed from the dataflow perspective,
is that support for parallel execution (e.g., creation and synchronization of parallel

activity) should be explicit rather than implicit. Said another way, the hybrid ar-

46The compiler used in this study was version 3.5, and the interpreter was at version 5.0.

137



§ 5.1 ANALYSIS

chitecture offers a change in point of view: parallelism should cost something, and
means should be provided for managing this cost. In this section, two simple ex-
ample graphs are analyzed to show the tradeoff between implicit and explicit sup-

port for parallelism. To the extent that real costs can be assigned to this support
under both the pure von Neumann and hybrid models, the economics of moving from
pure von Neumann, through hybrid, to dataflow can be understood.

The analysis hinges on assessing the costs of the three forms of low-level dataflow
graph instructions shown in Figure 5-1. These instructions will have machine-
specific realizations which make the differences more apparent. Each is considered,
in turn, under the dataflow regime and the hybrid regime. For the sake of this
analysis, it is assumed that the von Neumann regime is a degenerate case of the
hybrid regime with presumably higher costs for synchronization due to lack of

specific hardware support.

5.1.1 Sequential Execution

Under the dataflow model, execution of a sequential thread is conceptually
straightforward. A token is created as the result of having executed one instruction,
said token then enabling the execution of the next sequential instruction. From the
standpoint of graph semantics, it is necessary that all information to be communi-
cated from one instruction to the next be encoded on the token. That is, instruction

execution must be independent of any pervasive "state." Operationally, because the
stages in dataflow instruction execution (synchronization, instruction fetch, com-
putation, token formation) are essentially sequential, the time to execute any such
thread is proportional to the product of the pipeline depth and the thread length.

Under the hybrid and pure von Neumann models, execution of a sequential thread is
notably different. Once initiated, a thread occupies the pipeline until termination,
however short or long a time that may be. In an abstract sense, the execution of the
thread is atomic in that intermediate state changes in the processor are invisible
outside the thread, or, more importantly, that state can be communicated between
instructions in the thread implicitly. Operationally, instructions can be dispatched

at successive pipe beats, and the time to execute the thread is the sum of the
pipeline depth and the thread length.
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5.1.2 Forks

In the TTDA model and its derivatives, each invoked instruction can produce two (or
more) tokens destined for distinct successor instructions. That is, the fork operation

is implicit in virtually every instruction47. There is no explicit cost for spawning a
new thread of computation. Therefore, forks at the dataflow graph level are

represented solely by the machine instruction producing the value.

In the hybrid paradigm, a new thread of computation must be explicitly started with
the CTN or CNTT instructions. The implementation of the depicted fork operation,

then, would take two machine instructions - one to compute the value and another
to perform the fork. Here, then, is one clear cost of expressing parallelism: each
parallel thread of activity must bear the cost of at least one instruction to start it. In
the pure von Neumann model, the cost will be substantially higher because instruc-

tion sets lack the general notion of a fork.

5.1.3 Joins

In both the dataflow and hybrid regimes, synchronization of two threads of computa-

tion can be done in a single instruction, although there are still subtle differences.
In the dataflow model, the synchronization name is the instruction itself, known to
both threads. In the hybrid model, it is the arc, and not the instruction, which is the

basis for synchronization naming.

5.1.4 Analysis

Given these constraints, consider the following two examples (Figure 5-2). In the
first, the graph to be executed is a simple linear sequence of instructions. In the
second, a binary tree of fork operations is followed by an inverted tree of join opera-

tions. These examples are chosen not purely for their simplicity: the first is the
limiting case of sequentiality, and the second is the limiting case of parallelism

given binary fan-out, a single graph input, and a single graph output. In execution,
it is interesting to count the number of pipeline beats required for execution as a

function of the number of instructions n. Assume unit time for each instruction.

47There are exceptions to this generalization which are beyond the scope of this discussion and which
do not substantially alter this analysis.
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Figure 5-2: Limiting Cases of Sequential and Parallel Single-Input Graphs

In the sequential case, a dataflow machine will clearly take Pn cycles, where P is the

pipeline depth of the machine. The hybrid and pure von Neumann machines will
take only n cycles.

In the parallel case, for sufficiently large values of n, the idle cycles in a dataflow
machine at the very beginning and very end of execution can be ignored. The

dataflow machine, therefore, will take n cycles to compute the graph. In the hybrid

case, however, extra instructions will be executed to fork the parallel computation.

It is easy to show that the number of extra instructions is exactly

n-I
3

This assumes unit execution time for fork instructions. Therefore, the total number

of cycles in the hybrid case is

4n-1
-3
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IIncrasing $eutialy

Increasing Parallelism 14

Figure &-3: Cycle Counts as a Function of Degree of Sequentiaity

It is possible to estimate the equivalent number for the pure von Neumann case by

assuming a non-unit cost T for each fork instruction, corresponding to the overhead

of creating and managing a software task. The cost is exactly
3n+Tn+2T-3

3

or, for T~wl~n3-,,
T.

The ensuing tradeoff between the three regimes, as a function of degree of paral-
lelism (or sequentiality, depending on one's point of view) 48 , is depicted in Figure

5-3. While the exact shape of the curves is not known, it is clear that the endpoint

constraints must be met. Assuming these fu~nctions are monotonic, it can be argued

that above some level of parallelism, the pure dataflow approach is better, but the

degradation factor of compiling even the most highly parallel graph for the hybrid

machine results in only a modest increase in cycle count (33% by this simplistic

4SOho software cost of forking, T, is assumed to be minimally on the order of tans of instructions,
although it is more probably in the thousands.
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analysis)49. However, below this level of parallelism, the hybrid model has the

potential of executing fewer total cycles than either the dataflow or the pure von

Neumann models.

It remains to be demonstrated that this crossover point does indeed occur for real

programs. In the next section, a number of benchmarks are presented which

demonstrate an even more remarkable characteristic - that the hybrid model is

capable of executing fewer cycles than a dataflow machine by actually executing

fewer instructions, while still retaining the ability to exploit fine-grained parallelism.

This savings comes from the elimination of unnecessary forking, fan-out IDENTITY,

and signalling instructions which is attributable to program counter sequencing

within an SQ.

5.2 Idealized Model

This section examines static and dynamic characteristics of a number of small

benchmark programs using the hybrid code generator and an implementation of an

idealized model interpreter. The purpose is to better understand the effects of par-

titioning dataflow graphs, and to establish a baseline of performance for studies to

be done on the realistic model. In the course of these experiments, comparisons are
made to the TTDA. These comparisons come from executing exactly the same

programs (same sources, actually) on the GITA interpreter. This provides some in-

sight as to where these applications sit on the sequential / parallel axis presented in

the last section. It is shown that, for a number of cases, it does indeed happen that

the hybrid model executes fewer instructions (and thereby fewer cycles) than the

TTDA.

5.2.1 Static Statistics

A number of example programs 50 have been chosen to characterize this architecture.

This section presents the static characteristics of a cross-section of these programs,

49Te single input / single output constraint bears on this outcome. However, relaxing this to the
point where each instruction must be implemented in the hybrid case as an individual thread, the
penalty over the dataflow model is only a factor of two.

5lThese programs were taken from the ID Library and were not created by the author. Most, if not
all, of these are attributable to IL S. Nikhil and K. R. Traub.
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chosen according to the architectural features which they exercise. The table gives

the total static instruction count, the total number of SQ's, length of shortest and

longest SQ's, and the mean SQ length.

Static Characteristics
Codebkck Jma SQ'S Shawtme Lcorst Mean

ABS 4 2 1 3 2.00
AND 6 3 1 4 2.00
ARRAY 7 3 1 4 2.33
+ 6 3 1 4 2.00

EXPRESSION 15 7 1 7 2.14
FIB 31 6 2 19 5.17
FORLOOP 37 4 2 23 9.25
IFEXPR 22 5 1 9 4.40
MM 94 11 1 29 8.58
MM-0 59 8 1 39 7.37
MM-0-0 47 7 1 29 6.71

MERGESORT 11 3 2 5 3.67
MERGESORT-DIVIDE-0-0 95 19 1 20 5.00
MERGESORT-MERGE-0-0 108 20 1 30 5.40
MERGESORT-SORT-0-0 89 16 1 27 5.56

ATAN 130 7 1 45 18.57
COs 50 2 12 38 25.00
LOG 41 2 10 31 20.50
SIN 49 2 12 37 24.50
SQRT 63 2 9 54 31.50

MULTIWAVE 68 10 1 32 6.80
WAVEFRONT 67 11 1 15 6.09
WAVEFRONT-0 56 7 1 31 8.00
WAVEFRONT-0-0 53 7 1 34 7.57
WAVEFRONT-1 51 8 1 33 6.37

Procedures from the first group were taken from the Id Basic Library. The instruc-

tion count is attributable primarily to the parameter passing overhead. Recall that

arguments to a procedure are treated as dynamic synchronized arcs. Hence, the

number of SQ's will be bounded from below by one (the distinguished SQ) plus the

number of arguments. Hence, the monadic function ABS is made up of two SQ's,

while the dyadic AND is made up of three. The number of instructions is similarly

bounded from below: there will be one instruction to trigger each SQ other than the

distinguished one, one instruction to return the termination signal, one instruction

for each result value, plus the body of the function. In the case of ABS, there is one

result and one instruction (AS) in the body. Although AND has a single-instruction

body, the counts reflect the addition of another SQ which conditionally unpacks the

argument chain in the case that DIRECT-APPLY linkage is not used. Statically, two

additional instructions are added (one to trigger the extra SQ, and one instruction in
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that SQ to read the first argument in the chain). Dynamically, however, the situa-
tion is a bit different as discussed below. The dynamic instruction count depends on
the method of invocation - if DIRECT-APPLY is used, the dynamic instruction count
will be less than the static figure.

Procedures in the next group are slightly more complex. The simplest procedure is
EXPRESSION, which evaluates bZ-4ac. Its longest SQ is the distinguished one
which triggers five other SQ's, then synchronizes on the availability of the result,
returns it, and then returns a signal. A more elaborate procedure is IFEXPR,
which compares two numbers and then returns a tuple consisting of the larger num-
ber followed by the difference between the two numbers. At the other end of the
spectrum are recursive Fibonacci (FIB) and triply-nested loops in matrix multiplica-
tion (MM). Because no codeblock may contain more than one loop, MM is split by
the compiler into three codeblocks - one for the main procedure and outermost loop,
and one each for the remaining two loops. The interface to these two subordinate
codeblocks is via the FASIALL protocol. The next group represents the codeblocks
for MERGESORT which operate on lists. As in the case of the previous group,
procedures which invoke subordinate codeblocks (either nested loops or procedures)
and/or involve the manipulation of structures (a dynamic arc per reference) have a
significant number of SQs and a correspondingly short mean SQ length.

The next group is the Id Transcendental Library. These procedures are interesting
in that they involve no loops but rather the evaluation of a Maclaurin series expan-
sion as a large expression. Because there are no subordinate codeblocks and no I-
structures, there is a higher ratio of computational instructions to dynamic arcs,
resulting in fewer, longer SQa.

WaveFront and MultiWave are also included, and are discussed below.
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5.2.2 Dynamic Characteristics

____________ Dynamic Characteristic*, K=2

Crhcal Run
Codabock Jas Path S % Aba Auth La9th

AB 1 4 4 1 25.00 1 25.00 1.3
AND$T$T 5 5 1 20.00 1 20.00 1.7
ARRAY $<O 10> 7 8 1 14.29 0 0 1.7
+12 5 5 1 20.00 1 20.00 1.7

EXPRESSION 12 3 11 8 1 9.09 4 36.36 1.8
FIB 10 3,265 187 265 8.12 441 13.51 3.4
FORLOOP 1000 7,030 7,028 1 0.01 3,001 42.69 7.0
IF._EXPR 1 2 17 11 3 17.65 2 11.76 2.4
MM Ix1O 23,569 21,924 2,432 10.32 4,352 18.46 3.7

MERGESORT <20..1> 16,053 2,910 3,104 19.34 430 2.68 2.2

ATAN 0.1 1 110 70 5 4.55 22 20.00 10.0
COS 0.1 43 42 1 2.33 23 53.49 14.3
LOG 0.1 34 32 1 2.94 17 50.00 11.3
SIN 0.1 42 41 1 2.38 21 50.00 14.0
SQRT 0.1 51 49 1 1.96 23 45.10 17.0

MULTIWAVE 15xl5x2 12,769 5,694 538 4.21 2,787 21.83 5.4
WAVEFRONT 15x15 5,894 5,030 262 4.45 1,294 21.95 5.6

In this section, the example programs are analyzed using an idealized mode
emulator for the hybrid architecture. The emulator is described in more detail in
Appendix A. As part of the emulation, a number of statistics are gathered, and a

subset of these are presented in the table. They are

* Instruction Count: Each successfully-executed instruction is counted.
Aborted instructions (those which do not complete due to a synchroniza-
tion blockage) are not counted.

* Critical Path: Given a notion of one instruction executing in unit time
and a time axis with zero corresponding to the initiation of the proce-
dure, this is the least time after which the parallelism profile is iden-
tically zero51 .

* Aborts: Each aborted instruction is counted - if an instruction aborts
more than once (e.g., two synchronizing input operands), it is so counted.
Aborts are also expressed as a percentage of Instruction Count. While it
has never happened in practice, it is possible to have a value greater
than 100% here.

" Arithmetic Instructions: Each successful ALU operation (arithmetic,
logical, relational) is counted - the value is also expressed as a percent-
age of the Instruction Count.

" Run Length: A measure of the mean time between context switches
(see Section 4.2.1).

5 flThis definition is due to Arvind.
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Assumption

It is assumed that multiple suspended reads against a single frame slot are rare.

This assumption is borne out by the relatively low percentage of aborted instructions

(each abort causes a suspension against a slot). Given a low percentage of total

aborts, the probability of multiple, simultaneous suspensions against a single slot is

correspondingly low. Hence, multiple suspensions are "stored" in a single slot in the

same way a single suspension is.

The statistics gathered establish a "best case" baseline for additional analysis in

later sections. To that end, K has been set to its minimum value of two. In a later

section, the effect of K will be analyzed in some depth.

Analysis

In the first group of benchmarks, the dynamic cost of procedure invocation is

demonstrated. As expected, the instruction count for monadic procedures matches

the static instruction count (c.f , the Static table), while procedures with more than

one argument show fewer dynamic instructions5 2 . Arithmetic counts correspond to

the "useful" instruction in the body. Abort percentages are artificially high only be-

cause the number of instructions is so low. Mean run length is correspondingly

short.

In the second group, FORLOP shows a mean run length of 7.0. The loop itself is 7

instructions long, and because inter-iteration arcs are treated as dynamic, each in-

ner loop instance is a separate SQ invocation. Thus, a sequence break occurs be-

tween iterations. By contrast, the run length in MM (matrix multiplication) is

shorter because the inner loop body contains imbedded dynamic arcs (two I-FETCH

instructions for the elements being multiplied) and, consequently, several short SQ's

instead of a single, longer one. MM will be revisited in Section 5.2.2 where the cost

of K-unfolding is studied.

As expected, the trigonometric procedures are very efficient: because there are no

imbedded procedure calls, inner loops, or structures, there are no internal dynamic

arcs. Further, these routines are all monadic (excepting ATAN). The resulting par-

titioning maps all instructions into the same dependence set, and no dynamic

5'The interpreter uses the DIRIza.APPLY protocol for invocation at top level.
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synchronizations (save references to the argument) are done 53.

The Cost of K-Unfolding

The ability to unfold successive iterations of a loop has significant value in the

dataflow environment for exposing parallelism. In the hybrid case, the motivation is

similar, but given that no mechanism is provided at the hardware level for spread-

ing iterations of a single loop across processors 54, there is little benefit to unfolding

inner loops in some cases. Moreover, the cost of inner loop unfolding is noteworthy,

particularly for simple inner loops where the loop body is on the order of the size of

the iteration set-up code.

Unlike the TTDA scheme, there is a clear cost in the hybrid model for loop unfolding
in terms of additional synchronization instructions and frame area, and this cost

scales with K. Hence, for any one program instance, there must be some optimum
value of K which balances exposed parallelism against execution of overhead instruc-

tions.

3Although possible, the existing code generator does not optimize the cane of multiple references to a
dynamic arc's slot within the same SQ; all references are coded as synchronizing. Dynamically, of
course, only one suspension can actually take place for a given SQ / operand pair. However, the
instruction dispatcher will treat each such reference as potentially suspensive, admitting context swap-
ping. Such an optimization is worthwhile and relatively straightforward to implement.

541t is possible to do limited loop spreading by compiling specifically for it.

147



15.2.2 ANALYSIS

MM, Various UnMdings
Q~cI Avenge

Loqu K mams Pub Pmlm~imn

1 2 23,569 21,924 1.1
2 3 24,017 3,864 6.2

10 11 27,601 576 47.9
16 17 30,289 648 46.7

1 2 23,569 21,924 1.1
2 3 23,617 5,739 4.1
3 4 23,665 3,697 6.4
4 5 23,713 2,221 10.7
5 6 23,761 1,215 19.6
6 7 23,809 1,186 20.1
7 8 23,857 1,157 20.6
8 9 23,905 1,128 21.2
9 10 23,953 1,099 21.8

10 11 24,001 615 39.0
11 12 24,049 623 38.6
12 13 24,097 631 38.2
13 14 24,145 639 37.8
14 15 24,193 647 37.4
15 16 24,241 655 37.0
16 17 24,289 663 36.6

The first set of matrix multiplications (MM) was chosen specifically to show the ef-

fects of large values of K on inner loop unfoldings. The table shows, as a function of
the number of concurrent iterations (Loops) and K (K=Loops+l), the instruction

counts, the critical path, and the average parallelism (instruction count divided by
critical path) for a IWO<I0 example. In all cases, the run length was constant at 3.7,

and the number of arithmetic operations was 4,352.

As was expected, the cost of increasing K by 1 is on the order of 4n2, or 400: the
difference in instruction count between two runs whose K's differ by one is 448
(higher-order effects account for the remainder of the instructions, e.g., 4n overhead

instructions for the n middle loops). However, over the range where K is increasing

toward n, the change in K has a profound effect on the critical path and the average

parallelism. The optimal value for this case occurs with ten concurrent iterations, or
K=1 1. Beyond this point, the increasing time spent in overhead instructions for each

inner loop instance causes an increase in critical path time. The run length also

increases, but only for pathological reasons - the loop initialization code is a tight,
unsynchronizing loop dependent upon the value of K. As K increases, this loop

dominates the computation, and the mean run length tends toward the dynamic
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Figure 5-4: Critical Path and Average Parallelism Us. K

length of this loop5 5.

The second set of matrix multiplications shows an interesting effect. In this case,

the outer and middle loops were K-unfolded, but the inner loops were prohibited
from unfolding (i.e., K=2). Despite this, the average parallelism is on the same order,

55Culler has pointed out an interesting optimization, not explored in this work, to spawn a separate
SQ to perform initialization of the iteration descriptors for each of the K iteration areas. This would
result in a nearly trivial increase in instruction count, but would have a very noticeable effect of
shortening the critical path time.
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Figure 5-5: Available Parallelism under the Hybrid Model in WaveFront

and the run length is unchanged. Moreover, the incremental cost of unfolding has

been dramatically reduced from 448 to 48. Thus, the total number of instructions is

a much weaker function of K. Deciding how and when to unfold loops is a difficult
problem which is explored by Culler in his dissertation [211.

The critical path and average parallelism values show some interesting discon-

tinuities which are better visualized with the aid of Figure 5-4. For n iterations,

where K-I are allowed to proceed concurrently, there will necessarily be l- se-

quentialized sets of iterations. It is this nonlinearity which gives rise to the discon-

tinuities.

Just as in a dynamic dataflow machine, the benefits of loop unfolding can be ex-

ploited in the hybrid regime. The costs can be managed at compile and/or load times

in that the unfolding mechanism is dynamic and is simply controlled by the invoca-

tion constant K. Costs are a weak function of K, but the effect for nested loops is

necessarily multiplicative.

150



WAVEMRONT REVISITED § 5.2.3

50

40

so.

4 10.

0 0
100 200 300 400 500 600 679 t

Figure 5-6: Available Parallelism under the Hybrid Model in MultiWave

5.2.3 WaveFront Revisited

In motivating this architecture, three forms of parallelism were described using the

WaveFront example. An idealized parallelism profile was presented for WaveFront

and its companion program MultiWave. It was argued that von Neumann machines

were inherently incapable of exploiting all three forms, and that hardware changes

were required to support the necessary fine-grained synchronization. The hybrid

model was developed in response to the challenge of keeping the von Neumann

machine's ability to mask latency using expression level parallelism and instruction

reordering (a big improvement in locality over a dataflow machine) while simul-

taneously exploiting the other two kinds of parallelism.

15x15 WaveFront Dynamics

Critical Run Average
Codeblock Instrs Path Aborts % Aborts Arith % Arith L-nrth Parallelism

MultiWave, K=2 12,769 5,694 538 4.21 2,787 21.83 5.4 2.2
MultiWave, K=16 14,729 679 1,063 7.22 2,787 18.92 5.1 21.7
WaveFront, Kf2 5,894 5,030 262 4.45 1,294 21.95 5.6 1.2
WaveFront, K=16 6,846 534 533 7.79 1,294 18.90 5.1 12.8

Figure 5-5 shows the parallelism profile which results from executing the

WaveFront example under the idealized hybrid model. The vertical axis represents
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the number of concurrently executable SQ's as a function of time (c.f., Figure 2-6, p.

29). Figure 5-6 shows two iterations of the MultiWave example, also under ideal

assumptions (c.f, Figure 2-7a, p. 31). As is obvious from the figures, the hybrid

model is capable of exploiting the parallelism inherent in this application by virtue

of the fine-grained synchronization mechanisms. Details of these experiments are

shown in the table. Full unfolding of outer and inner loops was performed for the

K=16 cases. The increase of average parallelism as K is scaled to its optimum value

is not nearly so dramatic as in the matrix multiplication case simply because the

algorithmic parallelism is 0 (n) vs. 0 (n3) for matrix multiplication.

5.2.4 Power of a Hybrid Instruction

Assuming all other things equal, e.g., the opcode set, hybrid instructions are strictly

less powerful than TTDA instructions (viz., forking). An interesting question, as al-

luded to earlier, is whether the full generality of TTDA instructions is used fre-

quently or infrequently. By using the identical dataflow program graphs in generat-

ing code for both the TTDA and the hybrid machine, it has been possible to study

this question in some detail.

Comparison of Hybrid and TDA
Hybrid Critical TDA Critical

Codelock Inan Pah hnun Path

ABS 1 4 4 9 5
AND $T $T 5 5 9 5
ARRAY $<O 10> 7 8 11 6
+12 5 5 9 5

EXPRESSION 12 3 11 8 13 7
FIB 10 3,265 187 3,708 115
FOR-LOOP 1000 7,030 7,028 10,023 6,011
IFEXPR 12 17 11 18 9
MM 10x10 23,569 21,924 20,118 1 11,228

MERGESORT <20..1> 16,053 2,910 17,549 1,280

ATAN 0.11 110 70 96 27
COS 0.1 43 42 35 24
LOG 0.1 34 32 30 20
SIN 0.1 42 41 33 22
SQRT 0.1 51 49 41 27
MULTIWAVE 15x15x2 12,769 5,694 9,584 2,701
WAVEFRONT 15x15 5,894 5,030 4,523 2,477

The Table shows dynamic instruction counts for the benchmark programs as ex-
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ecuted on both the hybrid machine and on the TTDA56 using the same source

program for both57,58. The counts do not favor either architecture but rather show

that, for a variety of program types, instruction counts are comparable to first order.

If hybrid instructions are less powerful, how can this be?

One part of the answer lies in the reduced number of overhead operators in the

hybrid code resulting from fewer independent threads. In the TTDA, termination

detection is done via trees of IXDZTITY instructions. The leaves of these trees are

the instructions which otherwise produce no tokens, e.g., STORZ operations. In the

hybrid model, it is only necessary to test for termination of the SQ in which such

instructions reside. Hence, n STORls in one SQ imply only one explicit synchroniza-

tion operation instead of a binary tree of n-I IDXNTITY instructions.

Another part of the answer is elimination of the need to perform explicit fan-out of
FETC1ed values; the associated frame slots can simply be re-read. In the TTDA,

however, FZTCH operations can have only a single destination instruction. Multiple

destinations imply the need for an IZDETITY instruction as the destination for the

FZTCH.

It is likely that the remainder is attributable to the fact that it does not in general

take two hybrid instructions to displace a single TrDA instruction. There are many

instances of TTDA instructions in typical programs where the full generality and

power of the instruction is not being used in the sense that the hybrid partitioning

strategy chooses to eliminate it rather than mimic it. In the hybrid model, paral-

lelism is retained in the machine code only when dictated by dynamic arc con-

straints. According to this view, the remainder of the parallelism in TPDA code and

it associated forking is superfluous.

In the next section, the effect of this reduced parallelism in terms of the hybrid

machine's ability to tolerate latency is examined.

5The TTDA compiler used in this study was at level 3.22, and the GITA interpreter was at level
24.24.

57In neither case is the type of simulation model (idealized or not) relevant for instruction counts.
Instruction counts do not vary across these models.

58Some care is needed in interpreting TIDA critical path numbers in that the GITA interpreter
counts instructions, and instructions are not cycles in the strict sense. The hybrid interpreter also
counts instruction, but the assumption of instructions being cycles is more reasonably made.
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5.3 Realistic Model

In this section, the benchmark programs are used to characterize the realistic
model. In particular, critical path time is evaluated as a function of data cache
parameters, the number of processors, and communication latency. First, the
matrix multiplication example is used to establish an operating point for the data

cache. Using this, the remaining benchmarks are run with no cache, with the cache
at the operating point, and with an infinite cache to demonstrate the robustness of
the operating point. Then, the number of processors is allowed to vary. Finally,

latency is introduced.

In the realistic emulator, codeblock invocations are assigned to a specific logical
processor. At most one instruction may be executed at any given time on any given
processor. Moreover, a one cycle time penalty is charged for each aborted instruc-
tion, and extra cycles are accrued for frame accesses above one per instruction in the
absence of cache hits. Thus, an instruction making two frame references where one
operand is found in the cache will take unit time, while the same instruction will
take two time units when neither operand is found in the cache. Register accesses
are considered to be free. The minimum communication latency L is one instruction
time. This is charged against all packets formed by NOW, LOAD, and STOR instruc-
tions.

I-Structures are handled by an idealized processor which services requests without
imposing queue penalties. However, communication latency L also applies to the
results returned by LOAD packets. Hence, in the best case, a LOAD will incur 2L
units of latency in addition to the actual service time charged by the I-Structure

processor (a minimum of one additional instruction time).

5.3.1 Cache Operating Point

In the realistic interpreter, each processor has a single data cache. All operand
fetches are directed at the cache. Both successful fetches (hits) and unsuccessful
fetches (misses) are counted. Hit rate is computed as the ratio of hits to accesses.
The cache is organized as S sets, each with A associativity classes, and is referred to

as an SXA cache. The denoted cache line is a single local memory word. The cache
performs no prefetching, and ALU results are stored through to the local memory.
Hence, write-back is never necessary. Mapping of local memory addresses into set

addresses is done by simple hashing (exclusive-or folding) of the address.
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Critical Path v Cache Parameters

Critica Hit EffeCivc
Cadce Pak Re Hit

None 5,980 0 0

Infinite 4,996 63.5 100.0

1XI 5,475 26.2 41.3
2xI 5,261 33.4 52.6
4x1 5,184 41.2 64.98x1[ 5,105 48.1 75.7

16xl 5,080 53.4 84.1
32x1 5,014 68.7 92.4
64xl 5,005 60.3 95.0

1284l 5,000 61.6 97.0
256xl 4,997 62.7 98.7

1x2 5,474 28.3 44.6
2x2 5,066 42.7 67.2
42 5,057 51.1 80.5
8x2 5,022 56.6 89.1

16x2 5,007 60.1 94.6
32x2 4,998 61.9 97.5
64x2 4,996 62.5 98.4

128x2 4,996 63.0 99.2

Ix4 5,061 43.5 68.5
2x4 5,046 53.7 84.6
44 5,013 57.9 91.2
8x4 5,000 61.6 97.0

16x4 4,998 62.1 97.8
32x4 4,996 63.2 99.5
64x4 4,996 63.4 99.8

Ix8 5,034 56.5 89.0
2x8 5,005 58.6 92.3
4x8 4,999 61.9 97.5
8x8 4,999 62.1 97.8

16x8 4,996 63.4 99.8
32x8 4,996 63.4 99.8

The Table shows the effects of various cache organizations on the critical path time

for a 5x5 matrix multiplication example, using a single processor, LIFO queueing,

and K=2. For this example, an infinite cache results in a hit rate of 63.5% and a

critical path time of 4,99659. The idealized hit rate of less than 100% is understand-

able because all references to the cache are counted, not just those from successful

instructions. Readers of unwritten slots will, by definition, cause cache misses no

matter how big the cache is. Hence, it is useful to factor out this program-specific

behavior by calculating an effective cache hit rate as the ratio of actual hit rate to

ideal hit rate. This is shown in the table.

50The difference between this value and the raw instruction count is attributable to nonzero latency
which was not masked by parallel activity and to instruction aborts.
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Run length was uniformly 3.7 in these experiments.

It is clear, at least with this simple example, that a fairly small, simple cache has a

profound effect on eliminating the multiple frame access penalty. In the next sec-

tion, the robustness of the 64x4 cache is tested with the other benchmark programs.

This organization and size will be used for the remainder of the realistic mode ex-
periments as the cache operating point.

5.3.2 Cache Robustness

Critical Path vs. Type of Cache

No Infinim Hit 64x4 Hit Effectve
Codeblock Cache Cache Rae Cache Rate Hit

ABS 1 7 6 12.5 6 12.5 100.0
AND $T ST 9 8 12.5 8 12.5 100.0
ARRAY $<0 10> 15 14 8.3 14 8.3 100.0
+12 9 8 12.5 8 12.5 100.0

EXPRESSION 1 2 3 18 15 31.2 15 31.2 100.0
FIB 10 4,501 4,059 55.0 4,059 54.4 98.9
FOR-LOOP 1000 9,037 7,033 99.9 7,033 99.9 100.0
IFEXPR 1 2 25 21 58.3 21 58.3 100.0

MERGESORT <20..1> 23,252 20,858 48.6 20,956 45.6 93.8

ATAN 0.1 1 157 118 90.4 118 90.4 100.0
COS 0.1 61 45 90.9 45 90.9 100.0
LOG 0.1 52 36 80.8 36 80.8 100.0
SIN 0.1 59 44 90.3 44 90.3 100.0
SQRT 0.1 67 53 85.0 53 85.0 100.0

MULTIWAVE 15xl5x2 17,739 13,861 70.3 13,870 70.0 99.6
WAVEFRONT 15xi5 8,114 6,417 71.6 6,418 71.5 99.9

MULTIWAVE, K16 20,137 15,773 70.3 15,784 69.1 98.3
WAVEFRONT, K=16 9,305 7,355 71.4 7,359 70.4 98.6

The table shows the performance of the other benchmark programs given the as-

sumptions of no cache, an infinite cache, and a 64x4 cache. For the infinite and 644

cases, the actual hit rate is shown. The effective hit rate for the 64x4 cache is also

calculated. In all but the last two runs, K=2. For most of the K=2 cases except

Mergesort, the ratio of local memory space used to the 256 word capacity of the 644

cache was 1:1 or less. For the remaining three runs, the ratios were 7:1 (Mergesort),

18:1 (MultiWave, K=16), and 15:1 (WaveFront, K=16). While higher local memory to

cache ratios would make the point more convincingly, the hit rates indicate that a
644 cache is quite effective in a variety of cases.
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Figure 5-7: Speedup for MM on the Realistic Model

5.3.3 Parallelism

Lealistic Parallelism

Citical Average Hit

Procesm Path Parallelism Rae

1 33,457 0.8 58.5
2 17,137 1.6 58.5
4 9,069 3.0 57.7
8 4,751 5.8 55.8

10 3,919 7.0 55.9
16 2,616 10.6 56.0
32 1,734 15.9 58.7

Given a cache size of 64x4 on a single processor and LIFO queue discipline, the ques-

tion of how well the realistic machine can exploit parallelism remains. This section

presents the results of running a l0xlO matrix multiplication with the number of

processors as the independent variable. The example is necessarily small due to the

performance limitations of the emulator. It is significant only to note that paral-

lelism can indeed be exploited, even on a small example.

The table shows critical path, average parallelism60 , and aggregate cache hit rate.

GOA low value here reflects low parallelism, a significant number of aborted instructions, or both.
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Figure 5-& 10xlO MM with Communication Latency = 1

Figure 5-7 depicts the speedup (ratio of single-processor execution time to the execu-

tion time on n processors). In all cases, the number of aborted instructions was less

than 3,648 (13.2% of successful instructions), and run length was consistently 3.7.

Recall that the optimal hit rate for the matrix multiplication benchmark on a single
processor was found to be 63.5% by a previous experiment. Using this as a basis,

the effective hit rates in this experiment are approximately 90%.

5.3.4 Toleration of Latency

Efetof Latency

Cficsl Aven Hit
Proaesor P2th PatafldSM Rae

32, Lf10 1,899 14.5 59.6

No amount of "optimization" by packing instructions into larger chunks is worth
much if it negates the architecture's ability to synchronize efficiently or to tolerate
latency. It is reasonably clear that the hybrid architecture provides the necessary
synchronization support at a basic level for the purposes of program decomposition.

But what about the hybrid machine's tolerance of long latency operations?

The effect of physical partitioning, or distributing a program can be estimated by
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Figure 5-9: lOxlO MM with Communication Latency = 10

assigning a higher than unit latency cost to each inter-codeblock communication.

Specifically, each codeblock-to-codeblock communication incurs communication

latency L (ignoring locality), STOR instructions incur latency cost L, and LORD in-
structions incur latency cost 2L61.

Figure 5-8 shows the effect of unit latency on the OxlO example, with K=l . In

Figure 5-9, the inter-processor latency has been increased to 10 pipe steps, yet the

increase in critical path time is only 9.52%. Two forms of parallelism have made

this masking possible: first, multiple continuations are available on any one proces-

sor due to K-unfolding of loops. Second, each continuation contributes an average of

half a run length's number of instructions to the pool of executable instructions at

any given time.

5.4 Summary

This chapter has demonstrated the benefits of the hybrid architecture which argue

for its superiority over von Neumann machines as the basis for a scalable, general-

purpose parallel computer:

61Recall that the latency is attributable to the time between instructions and not time within an

instruction.
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* Synchronization: Efficient synchronization mechanisms allow the ex-
ploitation of the same kinds of parallelism as on a dataflow machine, yet
implicit synchronization is possible within a single thread. It has been
shown that the architecture is capable of iteration unfolding and inter-
procedural parallelism wherein the synchronization is not at all simple
and straightforward, but rather requires a fine-gained approach.

* Latency Toleration: The same synchronization mechanisms allow
parallelism to mask latency.

The underlying theme of the hybrid architecture is that the cost of exploiting paral-
lelism should be manifest and should not be "masked" by the architecture as it is in
the dataflow regime. This belief shows itself in explicit fork instructions and in loop
unfolding costs. Given that this architecture provides considerable leverage for
reducing the critical path time of the body of a given inner loop, some re-thinking of
compilation strategies along the lines of unfolding outer loops and mapping inner
loops to a small number of properly-ordered Sqs is indicated.

It has been shown that, although the hybrid instruction set is less powerful than the
TTDA instruction set, instruction counts are comparable, leading to the conclusion
that the full synchronization generality of the TIDA can indeed be compiled into
some amount of program-counter based synchronization.

Considerable work remains in evaluating and characterizing this architecture.
While preliminary studies have demonstrated that the hybrid architecture does
indeed have better locality than a TTDA-like machine and that even very small
caches can be used effectively to relieve the local memory bottleneck, additional
study is required to make engineering-level decisions about pipeline balance,
memory sizes, and so on.
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Chapter Six

Conclusion

This section reviews the work done to date in unifying the dataflow and von

Neumann views of architecture. The first section summarizes the conclusions of the

present work. The second section presents directions for future work. The last sec-

tion analyzes related efforts by other researchers in light of the present work.

6.1 Summary of the Present Work

As stated in the Introduction, the overall goal of this study is to discover the critical

hardware structures which must be present in any scalable, general-purpose paral-

lel processor to effectively tolerate latency and synchronization costs. The main con-

clusion is that any such machine must execute a parallel machine language, having

the following three characteristics:

" The execution time for any given instruction must be independent of
latency. Traditional latency-sensitive operations, e.g., LOIDs from
memory, must be re-phrased as split transactions which separately in-
itiate an operation and later explicitly synchronize on the availability of
the result.

" Each explicit synchronization event must be named. This implies ef-
ficient means for creating and re-using names as well as an efficient
mechanism for enforcing synchronizing behavior based on the names.
Names must be drawn from a large name space, and it must be possible
to manipulate them as first-class hardware data types.

" Means for expressing both implicit and explicit synchronization must be
provided. Implicit, i.e., program counter based, synchronization
provides the means for passing state between instructions within an un-
broken thread. Explicit synchronization is necessary at the program-
ming level in the exploitation of parallelism and at the machine level in
the masking of latency.

In that neither von Neumann nor dataflow machines exhibit all three of these

characteristics, a new architecture has been synthesized and analyzed. It has been

demonstrated through emulation experiments and analysis of the model that the

new architecture, based on the principles of parallel machine language, has the
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ability to exploit the same classes of parallelism as a dataflow machine.
Consequently, the hybrid architecture can control communication latency cost
through the exploitation of parallelism. Moreover, the cost of synchronization is low
enough to allow its free an unencumbered use in decomposing programs for parallel
execution.

From the standpoint of pure von Neumann architectures, the hybrid is evolutionary
in the addition of a synchronizing local memory, split transaction memory opera-
tions, and a large synchronization name space. Synchronizing local memories and
register sets are not new. Most noteworthy of the previous machines in this regard
is the HEP [41, 421. As described below, however, the scheme proposed in this study
is more general than that of the HEP. Similarly, split transactions in and of them-
selves are not new, but the hybrid architecture shows the importance of inexpensive
context switching as the primary means for making the most of split transactions.

The biggest departure from the traditional von Neumann architectural view is the
introduction of large name spaces for synchronization purposes in the hybrid. In
particular, the number of low-level synchronization names is limited only by the size
of local memory. Further, the number of concurrently active threads is limited only
by the number of meaningful continuations. In contrast, the HEP architecture al-
lows only 64 processes per processor to be named simultaneously. From a hardware
point of view, 64 processes is a sizable number. From the compiler's point of view,
however, the number is far too small and implies that processes are a precious
resource to be carefully managed. In the hybrid, this restriction is lifted. It could be
argued that any small, fixed number of hardware processes could be virtualized by
an added layer of interpretation, but the cost of such schemes in terms of lost time
makes them unattractive. Large synchronization name spaces add the flavor of
dataflow machines to von Neumann machines.

From the standpoint of pure dataflow architectures, the hybrid is evolutionary in
that it adds the means for the compiler to exercise some explicit control over the
pipeline. Because a thread holds the pipeline until it executes a potentially suspen-
sive instruction, the entire machine state can be brought to bear on the problem of
efficiently communicating information between instructions. This class of compiler-
directed pipeline control is absent in both the TTDA and in Monsoon [47]. The
hybrid further takes the stance that synchronization should be explicit as should
forking of parallel activity. This simplification of the instruction set demonstrably
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does not drive the instruction count up in many cases because much of the forking

and its attendant synchronization is superfluous. Even so, in the limiting case, the

hybrid machine can still emulate instruction level dataflow with an instruction

count expansion factor of no more than two. This leads to the observation that

explicit synchronization instructions, used when necessary, may in some sense be

cheaper than paying the full cost of synchronization at each instruction. This is,

perhaps, the equivalent of the RISC argument applied to multiprocessing.

In [8], the question of the possibility of "modifying" a von Neumann processor to

make it a suitable building block for a parallel machine was raised. It was believed

that the salient characteristics of a dataflow machine which made it a suitable

building block were split-phase memory operations and the ability to context switch

inexpensively. Given the addition of mechanisms like these, there was some linger-

ing doubt as to what kind of synchronization efficiencies could be achieved and how

much of the von Neumann architecture would be left. As presented in this study,

engineering arguments regarding efficient implementation of PML's and the persis-

tence of program counter based sequencing in the hybrid model have dispelled much

of the doubt.

As yet unanswered is the question of the effectiveness of the hybrid architecture, or

architectures like it, for other parallel programming models (e.g., Halstead's
MultiLisp [321); this is explored in more detail in Section 6.3. Of considerable prac-

tical interest is the possibility of targeting FORTRAN compilers to the hybrid

paradigm.

6.2 Future Work

Opportunities for continuation of the present work abound, and are only outlined

here.

" Modelb This work investigates an architecture suitable for exploiting
parallelism in single applications where all processors cooperate.
Higher-level systems issues such as virtualization of the processor space
and memory address space have not been considered for supporting mul-
tiprogramming and higher levels of tasking. It is believed that the right
approach is to generalize the SQ mechanism upward to subsume higher-
level tasks, but it is not clear how synchronization should be handled in
the presence of dynamic address translation and demand paged
memory.

" Code Generation: A number of schemes for improving dynamic in-
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struction counts (e.g., RSTN elimination in LOOPs when all sinks are in a
single SQ, TSTN elimination in SIGNAL-TREEs for multiple sources from a
single SQ, etc.) have been outlined but not implemented. It is reason-
able that this work should be carried out by a peephole optimizer which
operates on the partitioned graph. Such an idea has been considered
but not developed in the present work. Also, techniques for register al-
location need to be explored in the context of multiple, asynchronous
readers. Optimizations such as the System/370 style 8= instruction
for decrementing, testing, and branching on an iteration variable are im-
plementable in a straightforward way and need to be explored.
Improvements to the LOOP implementation, e.g., the overlapping of
iteration area initialization with useful computation, have been outlined
but not tested.

*Machine Structure: A number of optimizations remain unexplored,
e.g., reference-count slot resetting based on bounded fanout to make
frames entirely self-cleaning, hardware support for tagged data (e.g.,
trapping, autocoercion, etc.). The local memory presence bits should be
generalized along the lines of Monsoon [47] such that each operand fetch
or store can specify one of a fixed number of state-transition functions.
Such a mechanism can perform the existing functions, e.g., synchroniz-
ing and nonsynchronizing reads, nonstickiness, etc., as well as more
sophisticated functions (e.g., subsuming the flag bits of the iteration
descriptor). Various engineering issues remain, especially in the area of
implementing fast manager-call instructions (e.g., MIS, GZTC).

6.3 Related Work

This section explores related research efforts over the last 10 years or so. The com-

mon threads that bind these projects together are an understanding, at some level,

of the two fundamental issues of latency and synchronization, and the beliefs that

the von Neumann model is not sufficient, while the dataflow model is not necessary.

6.3.1 The Denelcor HEP

It is truly remarkable that the hybrid architectures under investigation today, in-

cluding the present work, can trace so much of their low-level synchronization struc-

ture to Burton Smith's HEP architecture [41, 42]. The basic structure of the HEP

processor is shown in Figure 6-1. The processor's data path is built as an eight step

pipeline. In parallel with the data path is a control loop which circulates process

status words (PSW's) of the processes whose threads are to be interleaved for execu-

tion. The delay around the control loop varies with the queue size, but is never

shorter than eight pipe steps. This minimum value is intentional to allow the PSW

at the head of the queue to initiate an instruction but not return again to the head of
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Figure 6-1: The HEP Processor Architecture

the queue until the instruction has completed. If at least eight PSW's, representing

eight processes, can be kept in the queue, the processor's pipeline will remain full.

This scheme is much like traditional pipelining of instructions, but with an impor-

tant difference. The inter-instruction dependencies are likely to be weaker here be-

cause adjacent instructions in the pipe are always from different processes.

There are 2048 registers in each processor; each process has an index offset into the

register array. Inter-process, i.e., inter-thread, communication is conceptually pos-

sible via these registers by overlapping register allocations. The HEP provides

FULL/EMPTY/RESERVED bits on each register and FULLEMPTY bits on each word in

the data memory. An instruction encountering EMPTY or RESERVED registers be-

haves like a NOP instruction; the program counter of the process, i.e., PSW, which

initiated the instruction is not incremented. The process effectively busy-waits but

without blocking the processor. When a process issues a LOAD or STORE instruction,

it is removed from the control loop and is queued separately in the Scheduler

Function Unit (SFU) which also issues the memory request. Requests which are not

satisfied because of improper FULIEMPTY status result in recirculation of the PSW
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within the SFU's loop and also in reissuance of the request. The SFU matches up

memory responses with queued PSW's, updates registers as necessary and reinserts

the PSW's in the control loop.

Thus, the HEP is capable up to a point of using parallelism in programs to hide

memory and communication latency. At the same time it provides efficient, low-level
synchronization mechanisms in the form of presence-bits in registers and main
memory. However, the HEP approach does not go far enough because there is a
limit of one outstanding memory request per process, and the cost of synchronization
involving the registers can be high because of the loss of processor time due to

busy-waiting. A serious impediment to software development on the HEP was the
limit of 64 PSW's in each processor. Though only 8 PSW's may be required to keep
the process pipeline full, a much larger number is needed to name all concurrent

tasks of a program.

Experience with the HEP has cast considerable doubt on the usefulness of the
registers for inter-thread communication, leading to the conjecture that registers

should either be local to a thread, used only between context switches without
automatic saving, or eliminated entirely. The hybrid machine follows the HEP ex-
perience in the belief that the low-level synchronization name space should be

thought of in terms of the entire address space of a conventional processor and not

simply in terms of an unusually large register set.

While the HEP was forced by its pipeline architecture to interleave at least eight
execution contexts in order to keep the pipeline full, the present effort recognizes the
deleterious effect this has on the "working set" size at the level of, say, an operand
cache. It is believed that in order to support a spectrum of programming models

from standard FORTRAN through the most highly parallelizable functional style,

the ability to efficiently execute long sequential threads cannot be traded away.
Moreover, unless the processor truly has nothing better to do, low-level busy waiting
(e.g., in the main pipeline and in the SFU pipeline) is wasteful of cycles.
Nevertheless, an important place in the history of computer architecture is rightly

reserved for the HEP as the first machine which made a genuine attempt to address

the two fundamental issues. Many new machines which follow its lead lie just

beyond the horizon.
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6.3.2 The MASA Architecture

Halstead at MIT and Fujita from NEC Corporation have jointly developed an ar-

chitecture called MASA which is multithreaded, and intended specifically for paral-

lel symbolic computation [30, 33]. MASA is a tagged architecture in order to support

generic operations (with a fully general software trap handling mechanism), paral-

lel, generation-based, incremental garbage collection, and efficient computation with

futures [32]. From the machine's perspective, a future is a value cell which may ei-

ther be unresolved or resolved: initially, a future has no value and hence is un-

resolved. Subsequent computation can cause the future to mutate (resolve) into a

cell which has a value which it retains for the remainder of its lifetime. It is this

latter use of tags and associated mechanisms which is particularly novel. MASA

provides a number of machine instructions which are nonstrict (e.g., copying, which

if given a future as an operand only manipulate the reference to the value cell).

These instructions are insensitive to whether the future is resolved or not. For those

instructions which are strict in any argument which is a future, execution must ei-

ther fetch the cell's value if it is resolved, or cause a suspension of the associated

task if it is not. The trick, of course, is to perform this so efficiently that the cost of

using a future is negligible.

MASA provides explicit hardware resources (called task frames) to hold the state of

a small number of tasks. This state consists of a small set of general purpose

registers along with a program counter, and the identifiers of the parent and one

child task frame. Memory words have a synchronizing bit (full/empty), but registers

are nonsynchronizing. At the beginning of every instruction cycle, the processor

may choose among the next instructions of all ready tasks, however, dispatching se-

quential instructions from a given task incurs a delay equal to the pipeline depth (in

the case of the machine currently under study, this is four cycles). Instructions en-

able a number of trap conditions, which cause dedicated hardware to check tag

fields, arithmetic overflow, a synchronization bit, etc., and if an enabled trap con-

dition is met, to No the instruction, suspend the task, and invoke a software trap

handler.

As compared to the hybrid architecture, the HEP-like instruction dispatching

scheme of MASA relies on parallelism in excess of the pipe depth at all times in

order to avoid dispatching bubbles. Halstead and Fujita recognize the importance of

efficient operation in scalar mode, and have outlined strategies which will improve

167



§6.3.2 CONCLUSION

on this dispatching restriction. The practicality of techniques to further reduce this
dispatch delay depend on the statistics of trap frequency. With additional study,

this will become clearer.

MASA can only name and efficiently switch between a very small number of tasks.

The frame saver does permit tasks to be rolled out and back in; however, the cost of
doing so must be considered, and higher level synchronization must be imposed to
decide when / what to roll. In the hybrid architecture, tasks (continuations) are
word-sized objects which can be freely created and destroyed. Their number is not
tied directly to a small physical resource 62. Again, only execution statistics can

demonstrate the significance, or insignificance, of this limit.

At first blush, it may appear that the restriction of one child per context imposes a

rather rigid restriction; however, it is possible to spawn, then detach, any number of
children, relying on full/empty bits or futures for synchronization. In the hybrid
model, a given codeblock can dynamically invoke any number of children, with all
synchronization occurring through the various frames. This is more strongly similar
to the action of MASA's notion of process creation, which requires allocation of fu-
tures for the passing of results. Tasks in MASA are clearly more than hybrid con-
tinuations in that they have private state, but they are less than codeblock invoca-

tions in that their private state is restricted to a small number of registers. There
is, therefore, a not-too-surprising tradeoff between the cost of allocating lots of fu-
tures for the privilege of treating all child invocations as processes and the potential

benefit of additional parallelism. One would clearly view the problem differently
starting with an annotated MultiLisp program vs. starting with a dataflow program

graph.

MASA provides the means for dynamic redistribution of work: the state of a task is

easily transported because it is relatively small. The hybrid machine must make
decisions about workload distribution at codeblock invocation time. It is not prac-
tical to consider picking up a hybrid codeblock invocation and moving it because of
its size63. Moreover, all continuations for a single codeblock invocation must reside

on a single processor.

s6This name space limitation is orthogonal to the large producer/consumer synchronization name
space (futures as words in a large memory) which is strongly similar to the I-Structure storage name
space used in the hybrid architecture.

aInter-odebock naming is not a problem, however, because all inter-codeblock interactions happen
with fully qualified names via the IOV instruction.
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6.3.3 The UCI Process-Oriented Model Project

Bic at the University of California, Irvine, has been investigating methods of exploit-

mg the apparent inefficiencies in dataflow systems by systematically eliminating
dynamic synchronization operations [121. His technique is based on translating

graphs into sets of linear sequences of instructions. To the extent that the se-

quences contain more than a single instruction, dynamic synchronization is

eliminated. His partitioning method is depth-first: Repeatedly apply this algorithm

until the graph is empty:

" Initialize a new (empty) partition.

" Select and remove an instruction from the graph, called inst, which has
the property that it receives no input from any instruction in the
codeblock.

" Repeat while inst has an output used by some other instruction in the
codeblock:

- Add inst to the partition.

* Remove inst from the graph.

- Select one of inst's outputs. Inst now becomes the instruction
denoted by this output.

" Add inst to the partition.

" Remove inst from the graph.

The execution paradigm is as follows: Program memory contains a suitable

representation of codeblocks as collections of partitions. Invocations are named ac-

cording to U-Interpreter rules [51 with the exception that the statement (instruction)
number s is divided into sl, naming a partition, and s2, naming an instruction

within a partition. In contrast to the dataflow model where triggering is based on

exact matching of activity names, names are matched associatively ignoring the s2

field. This is another way of saying that a partition is the unit of schedulability.

An associative waiting/matching store implements this mechanism, but much more

is expected of it than simply associative matching. Each entry uniquely denotes an
instance of a partition, contains a missing token count, and maintains a pointer to a

list of tokens which have arrived for the instance. As tokens arrive for a given in-

stance and which specify s2=O (i.e., they are headed for the first instruction), the

count is decremented. Until it reaches zero, tokens are accumulated in the list.

When it reaches zero, there are sufficient tokens to execute at least one instruction

in the partition. At this time, the actual instantiation of the partition takes place
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which involves copying a blank template of the code from program memory to execu-
tion memory. In the process, tokens in the list are merged with the code - values are

stored into the appropriate operand slots. A process control block is created and

entered into an array of such control blocks in the processor.

This model is interesting but may exhibit some implementation difficulties. From

experience with Id graphs, one would expect the partitioning to result in a large
number of very small partitions. Moreover, experience with the TTDA has shown

that, as a program's invocation tree is explored eagerly, the partially-computed state

left behind as the wave of control proceeds toward the leaves is enormous. These

two fact lead to the belief that the size of the PCB "register" array may have to be of

a size which is comparable to execution memory in order to avoid frequent deadlock.

Moreover, copy operations (with merging) are implied for each and every invocation.

Assuming execution memory is not multiported, this will represent a tremendous

number of cycles in which no useful computing can take place. In contrast, the
hybrid model does not copy code and, to the extent that code can be generated to

leave frames clean, invocation is extremely inexpensive.

It is not at all clear what implications the depth-first partitioning method will have
on the operand working set size and how this will compare to breadth-first tech-

niques such as MDS. The author is most interested in seeing the analytic and/or

experimental results as they are produced. It is clear, however, that depth-first par-

titioning will rely heavily on pipeline bypassing since, by definition, instruction n

depends on the output of instruction n-1.

6.3.4 The IBM/ETH Project

Buehrer at ETH Zurich and Ekanadham at IBM Yorktown have developed a model

for a hybrid machine which is remarkably similar to the present work. Details have

been published elsewhere [15, 16, 271 and are only summarized here.

The authors assume a shared memory load/store multiprocessor of conventional
origins augmented with features as follows:

" Local Memory with Presence Bits: Each processor has a memory to
which it alone has access, and that each slot in said memory has state
bits indicating &u/, empty, or awaited.

" Send/Receive Instructions: The instruction set supports a notion of
one processor sending an instruction to either another processor or to a
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global memory unit. Received message/instructions are executed
asynchronously. LoA messages are an example - an address from
which to load, and a tag are sent from the initiating processor to the
appropriate destination.

* Explicitly Split Read Transactions: The ImnA instruction, given a
LOCAL-ADDR and a GLOBAL-ADDR, resets the presence bit at
LOCAL-ADDR and builds a SEND which will read GLOEAL-ADDR, return it
to LOCAL-ADDR, and awaken any processes waiting on it.

* Tag-to-Process Mapper: Rather than having local processes busy-wait
once a long-latency operation has been started, process state can be
evacuated from the processor, and an identifier <LOCAL-ADDRProcess>
can wait in an associative memory. The completion of the long-latency
operation will include searching the memory for identifiers with match-
ing LOCAL-ADDas. The processes so denoted will be extracted and re-
enabled for execution.

Based on these primitives, it is shown that I-Structure storage can be synthesized
and, using I-Structures, producer-consumer parallelism can be exploited.

Their proposal for partitioning a dataflow graph involves coloring all primary input
nodes in the graph with a single color, and each local-memory synchronizing read
instruction (the target of a dynamic arc) with a separate color. For the remaining
nodes, color is inherited as follows:

* If all of its immediate predecessors of color c, the node inherits color c.

* Otherwise, the node is assigned a totally new color.

Nodes with the same color form a sequential segment. In execution, all of these
segments share access to the execution state of the codeblock. It is a simple matter
to prove that the method of dependence sets will always produce the same number
or fewer SQ's than Buehrer and Ekanadham (B+E) will; consider the common case of
two instructions which each depend on the same set of dynamic arcs. The method of
dependence sets will create a single SQ containing these instructions while B+E will
create two, each containing a single instruction. This will tend to drive down the
mean run length.

In the hybrid model, reawakening of tasks is expedited by storing the continuation
of the suspended SQ into the empty frame slot. In the B+E model, associative
matching is proposed with the attendant reliance on the si-, and cost of such a
memory. The have recognized, however, the possibility of storing process identifiers
directly into empty local slots when it can be guaranteed that there will never be
more than a single reader.
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There are other, less significant differences in the approaches. In B+E, a LOAD turns

into two instructions, one to initiate and one to synchronize, while in the hybrid
paradigm, the synchronization is always folded forward into the instruction which
will use the value. In B+E, registers may be considered valid across suspensions,
necessitating a means to save and restore them. In the hybrid approach, the main-
taining of state in registers across potential suspensions is forbidden so as to
eliminate the need for state saving. The issue here is much deeper than whether a
compiler can be organized to do this - it is clear that it can. The issue is one of
performance. The present work makes the statement that it is better to invest in
operand cache technology than in register save/restore technology. It has been
demonstrated through the experiments that this can be done, but it places a
premium on reducing the working set size at the operand level.

6.4 Closing Remarks

It is heartening to see the harmony in all of the above efforts. The author fully ex-
pects that somewhere among all of these projects is the key to practical scalable,

general-purpose parallel computing. All of these new efforts owe much to the
language-based studies of the dataflow model pioneered by Arvind and Dennis over
the last 20 years. But, just as importantly, these efforts seek to reconcile the ap-
parent benefits with the tremendous base of knowledge surrounding the von
Neumann model, viz., instruction set design, compilation, and optimization.
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Appendix A

Emulator

An emulator for the proposed architecture was designed and implemented after the

model of GITA and ID-WORLD [46], although different in significant ways. While
GITA was designed as a graph interpreter implementing dataflow instruction se-

quencing, the new emulator was designed as a sequential instruction stream inter-
preter. This permitted

" exploiting the inherent sequentiality of the underlying machine, yielding
a significant improvement in emulation speed, and

" expressing the emulation as an extension of the underlying machine.
The emulation, therefore, served as a touchstone by which to validate
the assumptions of minimal change to von Neumann architecture.

A.1 Data Structures

The key emulator data structure is the continuation: a continuation is an object
which denotes a frame descriptor, an instruction number, an invocation context, and

a state. Interpreter continuations closely model architectural continuations. The
other hardware types are also implemented as LISP structures with the exception of
INTs and FLOATs which are implemented as LISP FD(NUMs and FLONUMs.

A.2 Organization of the Emulator

The emulation is controlled by three top-level functions:

* The MM Processor: Performs the remote store-in of values to frame
slots for the MOVR instruction. Emulates the behavior of the "NetResp"
port to the local memory.

" The I-Structure Processor: Handles all requests to fetch from or store to
elements in the global I-Structure storage. Performs I-structure statis-
tics gathering.

" The Continuation Processor: Handles sequential execution of instruc-
tions within an SQ invocation including suspension. Performs top-level
instrumentation and timekeeping.
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Of these, the Continuation processor is the most significant. In order to describe its

operation, a digression into the representation of codeblocks and machine instruc-

tions is necessary.

Each machine opcode logically represents a set of runtime behaviors. While the

abstract behavior of, say, an AD op is obvious, the concrete behavior of any given

ADD, parameterized by the addressing modes of the operands, is potentially very dif-

ferent from other ADDs. Each operand fetch, for instance, can be one of

" A register fetch

" A nonsuspensive frame slot fetch

" A suspensive frame slot fetch

" An immediate constant

Therefore, the behavior of each opcode is described abstractly by a LISP macro, using

subordinate macros which encapsulate the mechanisms of operand access, cache ref-

erence, timekeeping, and so on. Constructing an executable instance of an instruc-

tion involves specifying a set of parameters (e.g., the addressing modes for each

operand), called the instruction instance's signature, then instantiating, expanding,

and compiling the corresponding macro as a LISP function. While complex, this ap-

proach has the advantage of avoiding a significant amount of function-calling over-

head. In fact, the mean number of function calls per hybrid instruction emulated is,

by instrumentation, on the order of 1.5.

As a codeblock is loaded into the emulator environment, functions are compiled for

each unique signature. Signatures and their corresponding compiled code are

memoized. Compiled instruction instances are shared when signatures match. This

makes codeblock loading rather slow at first, but as the set of frequently-reused in-

struction instances is built up, loading speed increases substantially.

As compared to the purely interpretive method of GITA, the hybrid emulator has

realized a speedup of a factor of three when running comparable experiments with

comparable statistics-gathering. This difference is p-imarily attributable to the

savings in function-calling overhead. Selective deleting of statistics when generat-

ing the compiled instructions has resulted in speed improvements which range from

a factor of 15 to a factor of 30 faster than GITA.
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A.3 Statistics Gathering

As in GITA, the emulator provides tools for collecting various statistics, both for the
idealized model and for the realistic model, including

*Functions of emulated time: Based on the model (realistic or
idealized), sets of rules govern the advancement of emulated time. In
the idealized model, each instruction executes in unit time, transit
latencies are zero, and aborted instructions (those which suspend) con-
sume zero time. An unbounded number of instructions may execute in a
given time step. Time advances in the sense that the satisfaction of all
synchronization constraints for a given instruction (both static and
dynamic) at the end of cycle t will cause the instruction to execute at
cycle t+1. In the realistic model, however, the number of processors is
fixed, codeblock invocations are bound to processors, transit latencies
are nonzero, and aborted instructions consume time. In either model,
successful completion of any event will be recorded at the time it occurs,
and can later be plotted as a function of emulated time. Such events
include

" ALU utilization (number of instructions executed).

, I-Structure Storage Utilization (numbers of fetches, stores, and
allocations).

* Local Memory Utilization (number of allocations and dealloca-
tions, plus the running sum of the excess of allocations over
deallocations).

* Cache Utilization in realistic mode (numbers of hits and misses).

* Histograms: Also based on the notion of emulated time, event fre-
quency is recorded:

" Dynamic Run Length Distribution.

" Cache Address Distribution.

" Store-to-Fetch Time Interval Distribution.

A.4 The User Interface and Debugger

The interpreter for the hybrid machine provides a top-level for loading and running

codeblocks, setting load-time and run-time parameters, collecting statistics, display-

ing program output and statistical results, and debugging. The debugger is imple-

mented at the level of the instruction set. It is possible (and somewhat meaningful)

to set breakpoints, to examine execution state, to perform tracing, and in general to

treat the emulator as one would a pure von Neumann executor. The difference, of

course, is that the state of a running computation consists of a tree of invocations,
rather than simply a stack.
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